Speaker
Description
Radioterapia protonowa jest metodą, która w obecnych latach rozwija się bardzo szybko, a stanowiska umożliwiające jej prowadzenie mają obok możliwości terapeutycznych spory potencjał naukowo badawczy. Istnieje duże zapotrzebowanie na prowadzenie badań z zakresu nowoczesnych metod dostarczenia wiązki oraz rozwoju detektorów protonów czy cząstek wtórnych. Badania z zakresu radiobiologii wymagają napromieniania materiałów biologicznych - od komórek, aż po materiał zwierzęcy. Z drugiej strony sama wiązka protonowa z zakresu energii stosowanych klinicznie może zostać wykorzystana do testowania modułów elektronicznych pod kątem wytrzymałości na promieniowanie kosmiczne (m. in. tzw. SEE (ang. Single Event Effects)) bądź zastosowania ich jako komponentów akceleratorów cząstek lub detektorów promieniowania.
Każde z powyższych zastosowań narzuca wiele różnych ograniczeń i wymagań – m.in. w zakresie dostarczanej energii, rozmiarów pola promieniowania, mocy dawki (prądu wiązki), struktury czasowej wiązki. Z drugiej strony stanowiska, działając w konfiguracji klinicznej, pozwalają na jedynie niewielką, pośrednią ingerencje w niektóre z wymienionych parametrów.
W niniejszej prezentacji omówione zostaną wyżej wymienione problemy, wraz ze sposobem, w jaki rozwiązano je w Centrum Cyklotronowym Bronowice. Szczegółowo opisana zostanie struktura czasowa dostarczenia wiązki, a także jej wpływ na wymienione uprzednio parametry. Przedstawiony zostanie także układ pomiarowy umożliwiający redukcję prądu wiązki do poziomu poniżej 10^9 p/cm2/s dla energii wiązki protonowej z zakresu 20-200 MeV.
Sesja | Protonoterapia |
---|