SUSY searches at the CMS

Małgorzata Kazana on behalf of the CMS Collaboration

Warsaw, Poland

XXII Cracow Epiphany Conference On the physics in LHC Runz Poland, Jan 7 – 9, 2016

Hunting for SUSY OUTLINE:

- Various supersymmetric scenarios can explain
 - low value of the Higgs boson mass and
 - provide a dark matter candidate
- Review of first SUSY searches in the LHC run 2
 - CMS data collected in 2015 2.2/fb at 13 TeV
 - **inclusive analyses**, focused on the **pair production** of **gluinos**, for which σ increases the most from 8 TeV (Run 1) to 13 TeV (Run 2)
 - in all-hadronic channel, based on complementary approaches using the kinematic variables MHT, MT2, the razor variables, and alphaT
 - additionally searched with **one** or **two leptons**
- Simplified Model Spectra interpretation

M. Kazana

Motivation \rightarrow Early searches

- Large increase in signal cross sections from $8 \rightarrow 13$ TeV at Run 1 gluino mass limits
- Strong (gluino) SUSY decaying to hadrons
 → largest cross sections, branching fractions → early sensitivity

Early CMS searches

Final states and approaches at 13 TeV:

- Fully hadronic 0 leptons In this presentation
 - MHT, HT (SUS-15-002)
 - MT2 (SUS-15-003)
 - Razor (SUS-15-004)
 - alpha T (SUS-15-005)

• 1 lepton

- Sum of jet masses MJ (SUS-15-007)
- Razor (SUS-15-004)
- Same-sign dilepton (SUS-15-008)
 - Rare SM signature
- **Oposite-sign dilepton (SUS-15-011)**
 - Excess in Run 1 ←

CMS Experiment at LHC, CERN Data recorded: Mon Oct 12 02:28:55 2015 CEST Run/Event: 258749 / 559467731 Lumi section: 361

Fully hadronic SUSY event candidate at 13 TeV

4 jets, 1 b-jet 1.3 TeV of MHT

 $\tilde{\chi}_1^0$

q

Simplified Model Spectra (SMS)

SUSY STRONG production, gluino decays to:

Multijet and MET channel

- Inclusive fully-hadronic analysis targeting strong production of gluino pairs → jets + MET
- Search binned in simple variables: MHT, HT, Njets, and Nb-jets
- SM backgrounds estimated with data-driven methods
- Analysis is sensitive to a wide range of strong SUSY models; interpreted in T1qqqq, T1bbbb, T1tttt
- **HT**: Scalar sum of the transverse energy of jets $H_{\rm T} = \sum_{i=1}^{N_{\rm jet}} E_{\rm T}$
- MHT: Magnitude of the vector sum of the transverse momenta of jets

$$H_{\mathrm{T}} = |\sum_{i=1}^{N_{\mathrm{jet}}} \vec{p_{\mathrm{T}}}|$$

Baseline selection in MHT/HT

Cut	Motivation	Impact	
MHT > 200, HT > 500	Get to trigger plateau	Trigger ~95% efficient here	
4+ jets (30+ GeV, CHS)	Target high-multiplicity SUSY models Save compressed signal with low-pt cut	p⊤ > 30 GeV cut saves up to 50% more signal w.r.t. cut at 50 GeV	
Δφ(jets 1-4, MHT) > (0.5, 0.5, 0.3, 0.3)	Suppress QCD by targeting under- measured jets	Rejects > 90% of QCD Favorable signal eff / real-MET BG eff	
e/μ veto (pt > 10 GeV, veto/medium ID, <u>mini iso</u>)	Suppress top/W →ℓv	> 95% efficient for hadronic signal	
Leptonic track veto (p _T > 5 GeV, m _T < 100 GeV, <u>track iso</u>)	Reject more top/W $\rightarrow \ell_V$ events with lower-pt leptons, leptons failing mini iso	Rejects 30% of lost e/μ events, ~90% of which have 5-10 GeV leptons	
Hadronic track veto (p _T > 10 GeV, m _T < 100 GeV, <u>track iso</u>)	Suppress top/W $\rightarrow \tau \nu \rightarrow$ had+MET	Rejects 30% of hadronic tau BG	

[SUS-15-002]

Search in bins

[SUS-15-002]

- Search bins chosen to cover wide range of topologies and help characterize a potential excess
- 3 (Njets) x 4 (Nb-jets) x 6 (HT/MHT) = 72 bins total

Background predictions

- SM bkg determined using data-driven techniques:
- Top and W+jets: estimated from single-lepton control samples
- $Z \rightarrow vv$ (invisible): from γ + jets and $Z \rightarrow \mu\mu$

Observed numbers of events in DATA and corresponding SM background predictions → good agreement

Results T1qqqq

- Good expected/observed agreement
- Exclude up to $\mathbf{m}\tilde{g} \approx 1.45$ TeV for low m_{LSP}

"SUSY at CMS", Epiphany Conference, Cracov, 7.01.2016

SUS-15-002

N_{b-iet} = 0

channel

Results T1bbbb

Exclude up to mg ≈ 1.65 TeV for low mLSP

→ Strongest exclusion in T1bbbb channel channel

"SUSY at CMS", Epiphany Conference, Cracov, 7.01.2016

SUS-15-002

N_{b-iet}≥3

RAZOR variables

Razor variables R (~MET) and M_R (has a peak)

SUSY signal well separated from the SM background

RAZOR Regions

- 3 analysis CATEGORIES boxes:
 - 1st : Multijet
- 2nd:MU

3rd:ELE

• At least 4 jets with pT > 40 GeV and $|\eta|$ <3

Background Estimation

SUS-15-00

14

- SM background shape is modelled by a parametric 2D function in $M_R \& R^2$
- The fit is performed using only the data in the sideband, and the functional form is extrapolated to the full M_R & R² plane
- 2D fits of distributions separately for events with 0, 1, 2, \geq 3 b-tags
 - \rightarrow 12 fits (3 boxes x Nbjets) for 2D bins

Stat.+Sys. no

-5

Bin Number

"SUSY at CMS", Epiphany Conference, Cracov, 7.01.2016

þ

Stat.+Sys.

Bin Number

Signal Injection (toy study)

- What happens when a signal is present?
- Events corresponding to a T1bbbb signal are injected and a background-only sideband fit is performed
- In signal sensitive region, we would observed fluctuation (nσ) above background

SUS-15-004

LIMITS

- For a massless LSP, gluino is excluded below masses
- T1bbbb: mg < 1.65 TeV
- T1tttt: mg < 1.60 TeV (0L+1L combined)
- T1qqq: **mg̃ < 1.35 TeV**

 Results complementary to the MHT/HT search [SUS-15-002]

SUSY with alphaT

• AlphaT: For events with 2 (pseudo-) jets:

$$\alpha_{\rm T} = E_{\rm T}^{j_2} / M_{\rm T} = E_{\rm T}^{j_2} / \sqrt{H_{\rm T}^2 - H_{\rm T}^2}$$

less energetic jet

transverse mass of di-jet system

discriminator between events with misreconstructed and genuine MET

α_T = **0.5**

For a perfectly measured dijet event with $ET^{j_1} = ET^{j_2}$ jets are back-to-back in ϕ in the limit of large jet momenta compared to their masses

α_{T} is smaller than 0.5

in the case of an imbalance in the measured ETs of back-to-back jets

α_{T} is greater than 0.5

when the two jets are not back-to-back and balancing genuine MET

AlphaT analysis strategy

- Inclusive search
 - jets+MET signatures
 - all jet/b-tag multiplicities
 - low trigger thresholds
- Robust analysis
 - Suppress QCD multi-jet to a negligible level
 - Rely heavily on multiple control samples for background estimation and systematics

- Sensitivity
- Discriminating variables:
 njet,nb,HT,MHT
- Give sensitivity to a wide variety
- of models, decays and topologies

Baseline selection

Selection:

- **njet** ≥ 1
 - pT,j1 > 100 GeV, |ηj1| < 2.5
 - pT,j2 > 40 GeV, |ηj2| < 3
- HT > 200 GeV
- MHT > 130 GeV
- Forward jet veto
 pT,j > 40 GeV, |ηj| > 3
- Isolated track veto pT,t > 10 GeV, |ηt| < 2.5

Categorization

Based on 2nd jet

- Monojet pT,j2<40 GeV
- Asymmetric 40<pT,j2<100 GeV
- Symmetric pT,j2>100 GeV

Binning:

191 (njet,nb,HT) bins x
 MHT bins (6-14)
 →Total of ~850 bins

Background suppression

the MHT vector computed without that jet,

QCD multi-jet is a key background for hadronic searches

- Reduction of this background to a negligible level achieved with very tight cuts on: $\Delta \phi^* - \text{Minimum } \Delta \phi$ between jet and
- aT > 0.65 to 0.52,
- **Δ**φ* > 0.5 ,

Remaining backgrounds stem mainly from: tt +jets, W + jets, $Z \rightarrow inv$ Predicted in the signal region from observed counts in control regions

"SUSY at CMS", Epiphany Conference, Cracov, 7.01.2016

SUS-15-0

AlphaT results and T1bbbb limit

- Expected/observed exclusion are in reasonable agreement
- At low LSP mass, mg̃ ≃ 1.6 TeV is excluded

"SUSY at CMS", Epiphany Conference, Cracov, 7.01.2016

SUS-15-005

m. [GeV]

M. Kazana

Opposite-sign dileptons at 13 TeV

- Search with 2 OSSF same-flavor leptons (ee, μμ) + jets + MET
- 2 search strategies: on and off(edge) the Z-peak
 - Tight selection for *leptons* pT > 20 GeV, $|\eta|$ <2.4, Mll > 20 GeV
 - Loose selection for jets pT > 35 GeV, $|\eta| < 2.4$
- Data driven prediction for 2 main backgrounds: DY and FS(eµ data), for others – MC
- Perform cut and count analysis in regions binned in Njets, Nb-tags, HT, and MET
 - On-Z: 17 bins with new one like ATLAS for high HT
 - Edge: 30 bins with 5 bins on MII –

[&]quot;SUSY at CMS", Epiphany Conference, Cracov, 7.01.2016

M. Kazana

Early SUSY Searches – Summary

M. Kazana

"SUSY at CMS", Epiphany Conference, Cracov, 7.01.2016

Conclusions

- No evidence of SUSY particles found... yet
- No significant excess in data in first look for SUSY
 - Run 1 excess in OS dilep channel cancelled by Run 2
 - but a ~2.5σ bump in X → γγ observed (more in Exotica talk on Sat)
- Run2 data constrains stronger (by 300 GeV) gluino masses up to 1.7 TeV in many SUSY-simplified models
- 2016 pp @ 13 TeV → hunting for new physics be restarted
 → more results in spring and summer

Work supported by Polish National Science Centre UMO-2014/14/WST2/00428 & UMO-2014/15/B/ST2/03998

Backup

References

- CMS-PAS-SUS-15-002 Search for supersymmetry in the multijet and missing transverse momentum channel in pp collisions at 13 TeV
- CMS-PAS-SUS-15-003 Search for new physics in the all-hadronic final state with the MT2 variable
- - CMS-PAS-SUS-15-005 Search for new physics in final states with jets and missing transverse momentum in \sqrt{s} = 13 TeV pp collisions with the α T variable
- CMS-PAS-SUS-15-004 Inclusive search for supersymmetry using the razor variables at √s= 13 TeV
- CMS-PAS-SUS-15-007 Search for supersymmetry in pp collisions at vs= 13 TeV in the single-lepton final state using the sum of masses of large radius jets
- CMS-PAS-SUS-15-008 Search for SUSY in same-sign dilepton events at √s= 13 TeV
- CMS-PAS-SUS-15-011 Search for new physics in final states with two oppositesign same-flavor leptons, jets and EmissT in pp collisions at Vs= 13 TeV

Systematics in MHT/HT search

Item	Relative uncertainty (%)
Integrated luminosity	4.6
Trigger efficiency	1.1
Pileup reweighting	0.5
Parton distribution functions	10
Renormalization and factorization scales	0–3
Initial-state radiation	0-11
Jet energy scale	0.5–4
Isolated-lepton and -track vetoes (T1tttt only)	2

[SUS-15-002]

Razor systematics

Systematic Uncertainty Source	Uncertainty
Lepton Selection Efficiency	2%
Fast Simulation Lepton Selection Efficiency	0 - 10%
Lepton Trigger Efficiency	3%
B-Tagging Efficiency	5 - 15%
Fast Simulation B-Tagging Efficiency	0 - 10%
Jet Energy Scale	5 - 10%
Luminosity	4.6%
Ren./Fac. Scale	3 - 5%
Parton Distribution Functions	10%
Initial State Radiation	2% – 20%
Pileup	< 1%
Monte Carlo Statistics	0 - 10%

[SUS-15-004]

AlphaT systematics

n _{jet}	Uncertainty (%) in background component		
,	tt, W+jets, residual SM	$Z \rightarrow \nu \overline{\nu} + jets$	
"Monojet":			
1	9–36	9–36	
"Asymmetric":			
2	11-105	9–46	
3	12-86	12–78	
4	16–52	13–43	
≥ 5	19–47	27–73	
"Symmetric":			
2	7–34	11–30	
3	9–31	13–44	
4	13–36	8-34	
≥ 5	15–22	17–28	
Additional contributions:			
$\alpha_{\rm T}$ ($H_{\rm T} < 800 {\rm GeV}$)	10-27	10-27	
$\Delta \phi_{\min}^*$ ($H_{\rm T} > 800 { m GeV}$)	22	22	
b-quark identification	<5	<5	

[SUS-15-005]