Standard Model Results from ATLAS (early 13 TeV data)

J. Chwastowski

IFJ PAN

On behalf of the ATLAS Collaboration

Supported in part by NCN grant UMO-2012/05/B/ST2/02480

Overview

• Outline of discussed measurements:

- Charged particle production (ALT-CONF-2015-028)
- Underlying event (ATL-PUB-2015-019)
- Inelastic pp cross-section (ATL-CONF-2015-038)
- Inclusive jet cross-section (ATLAS-CONF-2015-034)
- W/Z cross-sections (ATL-CONF-039, ATL-CONF-041, ATL-PHYS-PUB-2015-021)
- Z+jet cross-section (ATLAS-CONF-2015-041)
- Inclusive photons (ATL-PHYS-PUB-2015-016)
- ZZ cross-section @ 13 TeV see Stefan Richter's talk on Saturday
- 2015 LHC at 13 TeV data:
 - low average number of pp interactions/bunch crossing, <µ> a good place to study basic event properties at new energy frontier, large cross-section processes
 - high $<\mu>$ hard physics at new energy, small cross-section processes

Introduction

2015 - LHC RUN2 with $\sqrt{s} = 13 TeV$

Presented results coming from this period Also with extremely low pile-up

Machine works well

Good ATLAS overall data taking efficiency

Introduction

Charged particle production

- Basics, insight into the non-perturbative QCD, MC models tuning, constraining multiparton interactions
- Measure charged particle distributions: η, p_t, n_{ch}, <p_t> vs. n_{ch}
- Data: 170 μb⁻¹ (~9 000 000 events), <μ> = 0.005 Only primary particles: stable charged: τ > 300 ps produced in pp collisions or charged decay products of particles with τ < 30 ps strange baryons excluded
 Previously charged particles with 30 ps < τ < 300 ps were included (strange baryons)
- Main parts: TRT, SCT and pixels (IBL), MBTS
- Requirements: trigger minimum bias, vertex, track quality, $p_t > 500 \text{ MeV/c}$, $|\eta| < 2.5$

	Predictions:						
)		Generator	Version	Tune	PDF	Focus	Who
		Pythia 8	8.186	A2	MSTW2008LO	МВ	ATLAS
		Pythia 8	8.186	Monash	NNPDF2.3LO	MB/UE	Author's
		Pythia 8	8.186	A14	NNPDF2.3LO	UE/shower	ATLAS
		Herwig++	2.7.1	UEEE5	CTEQ6L1	UE	Author's
		EPOS		LHC		MB	AstroPart.
		QGSJET – II	II-04	Default		МВ	Author's

J. Chwastowski, SM Results from RUN 2

If MPI dominates large n_{ch} => <p_T> approximately flat if no colour reconnection If c.r. on => multiplicity decreases for a given number of MPIs and p_T per track increases

HERWIG++ UE-EE5 fails

reasonable for $n_{ch} < 30$

PYTHIA 8 MONASH, EPOS and QSGJET-II:

J. Chwastowski, SM Results from RUN 2

- Calculate charged multiplicity within |η| < 0.2 To compare with previous measurements strange baryons correction included: Δn_{ch} = 1.015+-0.009
- Data:

factor of ~2.2 between 900 GeV and 13 TeV ~1.2 between 8 TeV and 13 TeV match with lower energy results

 MC predictions: PYTHIA 8 A2 and EPOS do well PYTHIA 8 MONASH and QGSJET-II overestimate HERWIG++ underestimates

Summary:

EPOS – best description PYTHIA 8 A2 & MONASH - reasonable QGSJET-II and HERWIG++ - the worst

Underlying event

Underlying event (UE)

UE – activity accompanying any hard scattering in a collision event, beam remnants, MPI, also ISR and FSR contribute cannot be uniquely separated from hard process on the event-by-event basis look at the production in the plane perpendicular to hard scatter - diminished influence of hard process - sensitivity to UE

1. MBTS trigger

Underlying event

Expectations: gradual transition from inclusive min. bias to hard with increasing p_T^{lead}

PYTHIA A2 and EPOS better for lower p_T^{lead} – tuned to min. bias data PYTHIAS A14 & MONASH, and HERWIG++UEEE5 for p_T^{lead} > 5GeV – UE tunes

Underlying event

PYTHIAs 8, HERWIG++ close to data for $p_{\tau}^{lead} > 6$ GeV/c

 Σp_T rise – not properly described

EPOS poor for higher p_T^{lead} – absense of semi-hard min. bias

Epiphany '2016

Inelastic cross-section

Inelastic cross-section

- Non-perturbative QCD domain Colorless (diffractive) or colored exchange Basic measurement but important also for cosmic ray investigations Energy dependence limited by ln²s – F-M bound
- ATLAS elastic scattering measurement yields:

 $\sigma_{inel} = 71.34 \pm 0.34 (stat.) \pm 0.90 (syst.) mb@7TeV$ (Nucl. Phys. B889 (2014) 486)

Measure fiducial cross-section and extrapolate it
The largest gap is used to define two collection of hadrons – dissociation systems larger invariant mass (M_x) defines

Elastics: $\xi > 6*10^{-9}$ MBTS efficient above 50% if $\xi > 10^{-6}$

• Fiducial cross-section:

Result:

$$\sigma_{\text{inel}}(\xi > 10^{-6}) = 65.2 \pm 0.8(\text{exp.}) \pm 5.9(\text{lum.}) \text{ mb}$$

Epiphany '2016

J. Chwastowski, SM Results from RUN 2

Inelastic cross-section

Extrapolation:

PYTHIA 8 DL 0.085 and $f_{D} = \frac{\sigma_{SD} + \sigma_{DD}}{\sigma_{inel}}$ (from data): fraction of events with $\xi > 10^{-6}$: 0.891±0.046

Acceptance with different MC models between 0.876 and 0.937 -> extrapolation uncertainty

$$\sigma_{inel} = 73.1 \pm 0.9 (\exp.) \pm 6.6 (lum.) \pm 3.8 (extr.) mb$$

Good match with lower energies and predictions

J. Chwastowski, SM Results from RUN 2

Inclusive jet cross-section

Inclusive jet cross-section – QCD at TeV scale

Inclusive jet cross-section well described by NLO pQCD + CT10 + non-perturbative effects Reasonable agreement for ratios using MMHT and NNPDF3 NLO sets

Inclusive W/Z production

Inclusive W[±]/Z production

- Leptonic final state easily identifiable decay mode
- Theory prediction QCD@NNLO (includes EWK@NLO), cross-section depends on the PDFs -> a tool to test parton dynamics
- Data: 85 pb⁻¹ at 13 TeV, peak $L = 1.7 \cdot 10^{33}$ cm⁻²s⁻¹, < μ > = 19

Inclusive W[±]/Z production

At the moment luminosity uncertainty limits the precision

Inclusive W[±]/Z production

Reasonable agreement with SM predictions

Ratios show potential to discriminate among PDFs

Z+jets cross-section

Z + jets cross-section

Benchmark for pQCD+EW processes Backgrounds to Higgs and new physics

J. Chwastowski, SM Results from RUN 2

Z + jets cross-section

Madgraph5_aMC@NLO 2.2.2

Combined data: cross-sections & their ratios reasonably described by both models

Inclusive isolated photon

Inclusive isolated photon

Direct photon – directly from hard interaction Fragmentation photon – emitted in high p_{τ} parton fragmentation

Perturbative QCD test-bed in a cleaner environment in comparison to jets

Look for isolated photons with $E_t^{\gamma} > 120$ GeV and $|\eta^{\gamma}| < 2.37$ – isolated EM clusters, conversions Isolation and backgrounds from data

SHERPA 2.1 in a good agreement with data

Summary

- Machine in a very good shape and improving
- Selected results based on early Run2 data on soft/hard QCD were presented
- Large energy range in a single experiment 0.9 13TeV
- Inelastic cross-section $\sigma_{inel} = 73.1 \pm 0.9(\exp.) \pm 6.6(lum.) \pm 3.8(extr.)mb$
- Preliminary data on W/Z production show already discriminating power
- Measurements match lower energy ones
- At the moment luminosity uncertainty limits the precision
- Reasonable agreement with theoretical predictions
- Monte Carlo models tuned using lower energy data reasonably describe the 13 TeV data