Higgs τ -lepton Yukawa coupling measurement and the τ embedding method for background estimation

anna bożena kowalewska on behalf of the ATLAS Collaboration

Cracow Epiphany Conference

anna bożena kowalewska IFJ, Cracow Epiphany Conference

9 January 2016 1/16

Motivation $H \to \tau \tau$ background::embedding results $H \to \tau \nu$ conclusion

We Found it!

$M_{H} = (125.09 \pm 0.21 \pm 0.11) \text{ GeV}$

preliminary

Motivation

• from the above results we can't say anything about the new particle coupling to fermions hence, to determine whether it is SM *H*, it is so important to measure it.

イロト 不得下 イヨト イヨト

ъ

3/16

anna bożena kowalewska IFJ, Cracow Epiphany Conference 9 January 2016

To establish the mass generation mechanism for fermions as implemented in the SM, we need to measure the direct coupling of the Higgs boson to fermions.

$$\mathcal{L} \supset -\left(1+2arac{h}{v}
ight)\left(m_W^2 W_\mu W^\mu +rac{1}{2}m_Z^2 Z_\mu Z^\mu
ight) -\sum_{\psi}\left(1+c_\psirac{h}{v}
ight)m_\psiar\psi\psi$$

in Standard Model:

anna bożena kowalewska IFJ, Cracow Epiphany Conference

9 January 2016

4/16

ъ

5/16

э

9 January 2016

Why $H \to \tau \tau$

- heaviest lepton \rightarrow strongest coupling: couplings are proportional to masses
- lower background than in $b\bar{b}$ (leptonic versus hadronic channels)

< □ > < 同 >

anna bożena kowalewska IFJ, Cracow Epiphany Conference

to find signal of new physics we need to know all SM and QCD processes \Rightarrow background, as precisely as we can.

JHEP 04 (2015) 117

Signal $(m_H = 125 \text{ GeV})$	JeV) MC generator		$\sigma \times \mathcal{B}$ [pb]			
	_	$\sqrt{s} = 8$	TeV			
ggF, $H \rightarrow \tau \tau$	Powheg [42-45]	1.22	NNLO+NNLL	[48-53, 84]		
	+ Pythia8 [46]					
VBF, $H \rightarrow \tau \tau$	Powheg + Pythia8	0.100	(N)NLO	[57-59, 84]		
$WH, H \rightarrow \tau \tau$	Pythia8	0.0445	NNLO	[62, 84]		
$ZH, H \rightarrow \tau \tau$	Pythia8	0.0262	NNLO	[62, 84]		
De demond	MG	$\sigma \times B$ [pb]				
Dackground	MC generator	$\sqrt{s} = 8$ TeV				
$W(\rightarrow \ell \nu), (\ell = e, \mu, \tau)$	Alpgen [77]+Pythia8	36800	NNLO	[85, 86]		
$Z/\gamma^*(\rightarrow \ell \ell)$,	Arners Deminas	2010	NNLO	[05 96]		
$60 \text{ GeV} < m_{\ell\ell} < 2 \text{ TeV}$	ALFGENTTTTTTA	3510	THE DO	[00, 00]		
$Z/\gamma^*(\rightarrow \ell \ell)$,	ALDORN HEDRIG [87]	13000	NNL O	[85, 86]		
$10~{\rm GeV} < m_{\ell\ell} < 60~{\rm GeV}$	ALFGEN THERWIG [01]	10000	MALO			
VBF $Z/\gamma^*(\rightarrow \ell\ell)$	Sherpa [88]	1.1	LO	88		
tī	Powheg + Pythia8	253^{\dagger}	NNLO+NNLL	[89-94]		
Single top : Wt	Powheg + Pythia8	22^{+}	NNLO	95		
Single top : s-channel	Powheg + Pythia8	5.6^{+}	NNLO	[96]		
Single top : t-channel	AcerMC [80]+Pythia6 [73]	87.8 [†]	NNLO	97		
$q\bar{q} \rightarrow WW$	Alpgen+Herwig	54^{\dagger}	NLO	[98]		
$gg \rightarrow WW$	GG2WW [79]+HERWIG	1.4 [†]	NLO	[79]		
WZ, ZZ	HERWIG	30^{+}	NLO	98		
$H \rightarrow WW$	same as for $H \rightarrow \tau \tau$ signal	4.7^{+}				

• $Z/\gamma^* \to \tau \tau$ main and large irreducible background

method to estimate it.

- for $\tau_{len}\tau_{len}$ and $\tau_{len}\tau_{had} \Rightarrow W$ +jets contributions are determined by inverting the isolation requirements or fake-factor method,
- for $\tau_{had}\tau_{had}$ \Rightarrow multijet background is modelled using a template extracted from data.
- for $\tau_{lep}\tau_{lep}$ and $\tau_{lep}\tau_{had}$ \Rightarrow normalisation for background contributions from $t\bar{t}$ is obtained from data control regions.

anna bożena kowalewska IFJ. Cracow Epiphany Conference

9 January 2016

6/16

Motivation $H \to \tau \tau$ background::embedding results $H \to \tau \nu$ conclusion \Rightarrow embedding:

• kinematics of Z boson, Jets and underlying events as well as contributions from pile-up are taken from data

Only τ decays and the detector response to the τ decay products ۲ are based on simulation

anna bożena kowalewska IFJ,

Cracow Epiphany Conference

 $\label{eq:Motivation} {\cal H} \to \tau \tau \quad {\rm background::embedding} \quad {\rm results} \quad {\cal H} \to \tau \nu \quad {\rm conclusion}$

results

 \Rightarrow an excess of events over the expected background is found with an observed significance of 4.5 standard deviations

 \Rightarrow it provides evidence for the direct coupling of the Higgs to fermions.

anna bożena kowalewska IFJ, Cracow Epiphany Conference

9 January 2016 8/16

A 目 > 4 同 > 4

The measured signal strength, normalised to the Standard Model expectation, is consistent with the predicted Yukawa coupling strength in SM.

JHEP 04 (2015) 117

anna bożena kowalewska IFJ, Cracow Epiphany Conference

9/16

э

Motivation $H \rightarrow \tau \tau$ background::embedding results $H \rightarrow \tau \nu$ conclusion

footnote

embedding was also used in Run-1 in searches for charged Higgs in $H \rightarrow \tau \nu$ channel JHEP03 (2015) 088.

• It is hard to distinguish the signatures of the $H^{\pm} \rightarrow \tau^{\pm} \nu$ from the ones of SM $W^{\pm} \rightarrow \tau^{\pm} \nu$: the dominant part of the irreducible background in $\bar{t} \rightarrow bH(\tau\nu)\bar{b}W$ ch.

- comparison of the backgrounds obtained through embedding (black points) with simulation (histogram) for m_T,
- statistical and systematical errors of the embedding method are given by the black error bars, while of the simulation by gray hashed area.

< □ > < / →

anna bożena kowalewska IFJ, Cracow Epiphany Conferen

Conclusion

(日)

11/16

• evidence for decays of H boson into $\tau\tau$ pairs

• measured signal strength, normalised to SM expectation, is found to be

 $\mu = 1.43^{+0.27}_{-0.26}(stat.)^{+0.32}_{-0.25}(syst.) \pm 0.09 (theory syst.),$

which is consistent with the predicted Yukawa coupling in SM.

- embedding method helps to determine it with such precision,
- embedding as a largely data-driven method to set background.

anna bożena kowalewska IFJ, Cracow Epiphany Conference 9 January 2016

BACKUP

anna bożena kowalewska IFJ, Cracow Epiphany Conference

Ξ.

E

< □ > < 同 >

Impact of systematic uncertainties on the fitted signal-strength parameter μ for the combined fit for all channels and both centre-of-mass energies. The systematic uncertainties are listed in decreasing order of their impact on μ on the y-axis.

э

< □ > < // >

Summary of the triggers used to select events for the different analysis channels at the two centre-of-mass energies. When more than one trigger is used, a logical OR is taken and the trigger efficiencies are calculated accordingly.

$\sqrt{s} = 7$ TeV								
Thisman	Trigger level	Analysis level thresholds [GeV]						
Irigger	thresholds, p_T [GeV]	$\tau_{\rm lep} \tau_{\rm lep}$		7	$\tau_{\rm lep}\tau_{\rm had}$		$\tau_{\rm had} \tau_{\rm had}$	
Single electron	20-22	$e\mu$:	$p_{T}^{c} > 22 - 24$ $p_{T}^{\mu} > 10$	24 $e\tau: p_T^c > 2!$ $p_T^\tau > 20$			-	
Single muon	18	μμ: eµ:	$p_T^{\mu_1} > 20$ $p_T^{\mu_2} > 10$ $p_T^{\mu} > 20$ $p_T^{\mu} > 15$	$\mu \tau$:	$\begin{array}{l} p_{\mathrm{T}}^{\mu} > 22 \\ p_{\mathrm{T}}^{\tau} > 20 \end{array}$		-	
Di-electron	12/12	ee:	$p_T^{e_1} > 15$ $p_T^{e_2} > 15$		-		-	
$\text{Di-}\tau_{\text{had}}$	29/20		-		-	$\tau \tau$:	$p_T^{\tau_1} > 35$ $p_T^{\tau_2} > 25$	
$\sqrt{s} = 8$ TeV								
Trigger	Trigger level	Analysis level thresholds [GeV]						
****880*	thresholds, p_T [GeV]	$\tau_{\rm lep}\tau_{\rm lep}$ $\tau_{\rm lep}\tau_{\rm had}$			lep7had	$\tau_{\rm had}\tau_{\rm had}$		
Single electron	24	eμ: ee:	$p_T^e > 26$ $p_T^\mu > 10$ $p_T^{e_1} > 26$ $p_T^{e_2} > 15$	$e\tau$:	$\begin{array}{l} p_{\mathrm{T}}^{\mathrm{e}} > 26 \\ p_{\mathrm{T}}^{\tau} > 20 \end{array}$		-	
Single muon	24		-	$\mu \tau$:	$p_T^{\mu} > 26$ $p_T^{\tau} > 20$		-	
Di-electron	12/12	ee:	$p_T^{e_1} > 15$ $p_T^{e_2} > 15$		-		-	
Di-muon	18/8	$\mu\mu$:	$p_T^{\mu_1} > 20$ $p_T^{\mu_2} > 10$		-		-	
Electron+muon	12/8	$e\mu$:	$p_T^c > 15$ $p_T^{\mu} > 10$		-		-	
$\text{Di-}\tau_{\text{had}}$	29/20		-		-	$\tau \tau$:	$p_T^{\tau_1} > 35$ $p_T^{\tau_2} > 25$	

anna bożena kowalewska IFJ, Cracow Epiphany Conference

ъ

(日) (四) (日) (日) (日)

Discriminating variables used in the training of the BDT for each channel and category at $\sqrt{s} = 8$ TeV. The filled circles indicate which variables are used in each case.

Variabla	VBF		Boosted			
variable	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had}\tau_{\rm had}$	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had} \tau_{\rm had}$
$m_{\tau\tau}^{MMC}$	•	•	٠	•	•	•
$\Delta R(\tau_1, \tau_2)$	•	•	•		•	•
$\Delta \eta(j_1, j_2)$	•	•	٠			
m_{j_1, j_2}	•	•	•			
$\eta_{j_1} \times \eta_{j_2}$		•	•			
$p_{\mathrm{T}}^{\mathrm{Total}}$		•	•			
Sum $p_{\rm T}$					•	•
$p_{ m T}^{ au_1}/p_{ m T}^{ au_2}$					•	•
$E_{\rm T}^{\rm miss}\phi$ centrality		•	•	•	•	•
m_{ℓ,ℓ,j_1}				•		
m_{ℓ_1,ℓ_2}				•		
$\Delta \phi(\ell_1, \ell_2)$				•		
Sphericity				•		
$p_T^{\ell_1}$				•		
$p_{T}^{j_{1}}$				•		
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$				•		
m_{T}		•			•	
$\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$	•					
$C_{\eta_1,\eta_2}(\eta_{\ell_1}) \cdot C_{\eta_1,\eta_2}(\eta_{\ell_2})$	•					
$C_{\eta_1,\eta_2}(\eta_\ell)$		•				
$C_{\eta_1,\eta_2}(\eta_{j_3})$	•					
$C_{\eta_1,\eta_2}(\eta_{\tau_1})$			•			
$C_{\eta_1,\eta_2}(\eta_{\tau_2})$			•			

anna bożena kowalewska IFJ, Cracow Epiphany Conference

9 January 2016 15/16

Ξ.

(a)

The scale factors calculated in control regions (CR) for background normalisation. Only the statistical uncertainties are given.

Channel	Background	Scale factors (CR)		
		VBF	Boosted	
$\tau_{\rm lep} \tau_{\rm lep}$	Top	0.99 ± 0.07	1.01 ± 0.05	
	$Z \rightarrow ee$	0.91 ± 0.16	0.98 ± 0.10	
	$Z \rightarrow \mu \mu$	0.97 ± 0.13	0.96 ± 0.08	
$\tau_{\rm lep} \tau_{\rm had}$	Top	0.84 ± 0.08	0.96 ± 0.04	

(日) (日) (日) (日) (日)

9 January 2016

Ξ.

16/16

anna bożena kowalewska IFJ, Cracow Epiphany Conference