Exclusive production at CMS

Marek Walczak

University of Warsaw

Epiphany, 08.01.2016

< A

▶ < ∃ ▶

-

2 Analysis at CMS

General concepts

Central Exclusive Production: a unique QCD process in which particles are produced via colourless propagators

3/15

Detector

Broad coverage in pseudorapidity

4/15

< ロ > < 同 > < 回 > < 回 >

Introduction – diagrams

- Measurement of exclusive $\gamma\gamma \rightarrow \mu^+\mu^-$ production at $\sqrt{s} = 7$ TeV, 2011, CMS-PAS-FWD-10-005
- luminosity: 40 pb⁻¹, 2010 data, 80% of events with pileup > 1

Kinematic selection

Selection	Data	Signal	p diss.	Double p diss.	DY	Sum
Trigger	7.87M	301.4	522.9	276.8	54563	55664
Vertex + Track-exclusivity	921	246.9	436.9	197.1	55.9	936.8
Muon ID	724	193.4	335.5	159.6	52.8	741.3
$p_T > 4 { m GeV}, \eta < 2.1$	438	131.7	240.8	106.4	19.7	498.6
$m(\mu\mu) > 11.5 \mathrm{GeV}$	270	94.5	187.3	85.8	12.5	380.1
$3D$ angle $< 0.95\pi$	257	87.2	178.4	83.3	12.1	361.0
$1 - \left \Delta \phi / \pi \right < 0.1$	203	87.2	126.2	41.0	8.3	262.7
$ \Delta p_T < 1.0 { m GeV}$	148	86.4	78.6	16.1	2.7	183.8

The histograms are the result of fitting the MC to the data:

Results

- The resulting visible cross-section from a fit to the $p_T(\mu^+\mu^-)$ distribution s $\sigma(pp \rightarrow p\mu^+\mu^-p) = 3.38^{+0.58}_{-0.55}$ (stat.) ± 0.16 (syst.) ± 0.14 (lumi) pb.
- The corresponding ratio to the predicted value is $0.83^{+0.14}_{-0.13}$ (stat.) ± 0.04 (syst.).

Introduction – diagrams

- Search for central exclusive $\gamma\gamma$ production and observation of central exclusive e^+e^- production in pp collisions at $\sqrt{s} = 7$ TeV, 2012, CMS-PAS-FWD-11-004
- pp collisions at $\sqrt{s} = 7$ TeV using a data sample collected in 2010. The corresponding integrated luminosity is 36 pb⁻¹.

Event selection summary

Number of diphoton (dielectron) candidates remaining after each selection step:

exclusive diphoto	on analysis	exclusive dielectron analysis		
selection criterion	events remaining selection criterion		events remaining	
Trigger	3 0 2 3 4 9 6	Trigger	3 0 2 3 4 9 6	
Photon reconstruction	1 683 526	Electron reconstruction	132 271	
Photon identification	40 692	Electron identification	2 6 4 8	
Cosmic ray rejection	32 775	Cosmic ray rejection	2 023	
Exclusivity requirement	0	Exclusivity requirement	17	

Predicted numbers of dielectron events to be observed:

Process	\mathcal{L}	σ	ε	nEvents
el-el	$36\pm1.4{ m pb}^{-1}$	3.74±0.04 pb	$0.0488 {\pm} 0.0056$	6.57±0.07 (theo.)±0.80 (syst.)
inel-el	$36\pm1.4{ m pb}^{-1}$	3.34±0.67 pb ×2	$0.0348 {\pm} 0.0035$	8.37±1.68 (theo.)±0.90 (syst.)
inel-inel	$36\pm1.4{ m pb}^{-1}$	3.52±0.70 pb	$0.0119 {\pm} 0.0011$	1.51 ± 0.30 (theo.) ± 0.15 (syst.)
Total				16.5±1.7 (theo.)±1.2 (syst.)

Results

Upper limit on the production cross section at 95% confidence level:

$$\sigma_{
m exclusive }^{E_{
m T}(\gamma)>5.5\,{
m GeV},\,|\eta(\gamma)|<2.5}<1.30~{
m pb}$$

Comparison of the cross section between the measurement and four different theoretical predictions:

Ultra–Peripheral Collisions (UPC)

UPC photoproduction

Analysis: Υ photoproduction in UPC events during HI collisions

(日) (日) (日) (日) (日)

12/15

Nuclear Shadowing

Current knowledge of nuclear PDFs, shown as the ratio of bound over free proton gluon distributions. Shadowing regions can be seen for x < 0.01. Plot for $Q^2 = 1.69 \text{GeV}^2$:

From J.Phys. G39:015010, 2012.

Υ photoproduction

The kinematic range in which UPCs at the LHC can probe gluons in protons and nuclei:

14/15

Υ photoproduction in Run–2

CMS Experiment at LHC, CERN Data recorded: Thu Nov 26 17:58:15 2015 CET Run/Event: 262694 / 9927806 Lumi section: 131 Orbit/Crossing: 34110565 / 1848

dimuon object invariant mass = 9.37 GeV

