LHCb Detector	Measurement in LHCb 000000	

Determination of ${\cal CP}\mbox{-violating phase }\phi_s$ in $B^0_s\to J/\psi\phi$ decay

V. Batozskaya¹ on behalf of LHCb collaboration

¹National Centre for Nuclear Research, Warsaw, Poland

XXII Cracow Epiphany Conference 7-9 January 2016

1 11	Ch	Detector
	CD.	Delector

 \mathcal{CP} Violation

Measurement in LHCb

Large Hadron Collider beauty Detector

- Single-arm forward spectrometer covering range: $2 < \eta < 5$ (10< $\theta < 300$ (250) mrad)
- Momentum resolution: $\Delta p/p = 0.4\%$ at 5 GeV/c to 0.6% at 100 GeV/c
- Impact parameter resolution: 20 μ m for high P_T tracks
- $\mathcal{L} = 3 \text{ fb}^{-1}$, collected in 2011-2012 at $\sqrt{s} = 7-8 \text{ TeV}$

 \mathcal{CP} Violation

Measurement in LHCb

Violation of the \mathcal{CP} symmetry

Three mechanisms of \mathcal{CP} violation exist:

- Direct (in decay amplitudes)
- Mixing (indirect)
 - Described by phenomenological Schrödinger equation: $i\frac{d}{dt} \begin{pmatrix} |B_{s}^{0}(t)\rangle \\ |\bar{B}_{s}^{0}(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\Gamma\right) \begin{pmatrix} |B_{s}^{0}(t)\rangle \\ |\bar{B}_{s}^{0}(t)\rangle \end{pmatrix}$
 - Solutions give two mass eigenstates: B_H and B_L $|B_L\rangle = p|B_s^0\rangle + q|\bar{B}_s^0\rangle$ $|B_H\rangle = p|B_s^0\rangle - q|\bar{B}_s^0\rangle$
 - Mixing parameters $\begin{array}{l} \Delta m_s = M_H - M_L \quad \Delta \Gamma_s = \Gamma_L - \Gamma_H \\ \Gamma_s = \frac{\Gamma_L + \Gamma_H}{2} \quad \phi_{12} = \arg(-M_{12}/\Gamma_{12}) \end{array}$
- Interference between direct decays and decays with mixing

In the Standard Model \mathcal{CP} violation is described by the CKM matrix

Due to interference between direct decays (D) and decay with mixing (M) we can to measure the value of $\phi_{\rm s}$

$$\phi_{s} = \Phi_{M} - 2\Phi_{D} = -2\beta_{s} = -2\arg\left(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right)$$

- from mixing: $\phi^{M} = 2 \arg(V_{ts}V_{tb}^{*})$
- from direct decays: $\phi^D = \arg(V_{cs}V_{cb}^*)$
- If new particles are exchanged in box diagram, then value of ϕ^M will be different than SM prediction $\phi_s = \phi_s^{SM} + \phi_s^{NP}$

In the SM the phase ϕ_s^{SM} is small and very well predicted [PRD 84 (2011) 033005]:

$$\phi_s = -0.0363^{+0.0012}_{-0.0014}$$
 rad

The measurement ϕ_s is crucial in LHCb from $B_s^0 \rightarrow J/\psi\phi$ decays

- CP-even: $L = 0,2 \rightarrow A_0, A_{\parallel}, \delta_0, \delta_{\parallel}$
 - $C\mathcal{P}$ -odd: L= 1 \rightarrow A₁, δ_1

The variuos components of \mathcal{CP} can be separated statistically by measurement of three angles:

CP Violation

- θ and φ polar and azimuthal angles which describe μ^+ direction (in the rest frame of J/ψ)
- ψ angle between $\vec{p}(K^+)$ and $-\vec{p}(J/\psi)$ (in the rest frame of ϕ)

LHCb DetectorCP Violation
OCOOMeasurement in LHCb
OCOOOSummary
$$B^0_s \rightarrow J/\psi\phi$$
 decayDecay rate of $B^0_s \rightarrow J/\psi\phi$ decaysImage: CP Violation of the provided HTCD of the provided

$$\frac{d^4 W(B^0_s \to J/\psi \phi)}{dt d \cos \theta d \varphi d \cos \psi} \equiv \frac{d^4 W}{dt d \Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$

- Time dependent part: $h_k(t)$
 - $A_0, A_{\parallel}, A_{\perp}, A_S$
 - $\phi_s, \Gamma_s, \Delta\Gamma_s, \Delta m_s$
- Angular dependent part: $f_k(\Omega)$
 - ψ, θ, φ

s)

• Trigger and selection of $B_s^0 \rightarrow J/\psi\phi$ events

- Measurement of mass, proper time and angular variables value
- Determination of an initial flavour

 $\frac{d^4 W(B_s^0 \to J/\psi \phi)}{dt d \cos \theta d \varphi d \cos \psi} = f(\phi_s, \Delta \Gamma_s, \Gamma_s, \Delta m_s, A_0, A_{\parallel}, A_{\perp}, A_5, \delta_0, \delta_{\perp}, \delta_{\parallel}, \delta_5)$

[NJP 15 (2013) 053021]

- Additional channel [PLB 736 (2014) 186]:
 - $B_s^0 \to J/\psi(\mu\mu) f_0(980)$ where $f_0 \to \pi^+\pi^-$ • $N_{sig} = 27 \ 100 \pm 200 \ (3 \ \text{fb}^{-1})$

- $\mathcal{L}=3 \text{ fb}^{-1} (2011+2012)$
- $N_{\rm sig} = 95\ 690 \pm 350$
- V. Batozskaya, NCBJ, Warsaw, Poland

- Total fit •
- CP-even: L = 0 and 2
- CP-odd: L = 1
- \mathcal{S} -wave

5

10 Decay time [ps]

10

LHCb DetectorCP Violation
0000Measurement in LHCb
 $000 \bullet 00$ SummaryReconstruction of $B^0_* \rightarrow J/\psi(\mu\mu)\phi$ decaysThe results of the parameters measurementLHCb Violation
 $D \to 00$

Standard Model predictions:

- $\phi_s^{c\bar{c}s} = -0.0363^{+0.0012}_{-0.0014}$ rad [PRD 84 (2011) 033005]
- $\Delta\Gamma_s = 0.087 \pm 0.021 \text{ ps}^{-1}$ [A. Lenz et al, arXiv:1102.4274]

• LHCb results [PRL 114 (2015) 041801]:

$$\label{eq:phi} \begin{split} \phi_s^{c\bar{c}s} &= -0.010 {\pm} 0.039 \mbox{ rad} \\ \Delta \Gamma_s &= \! 0.0805 {\pm} 0.0091 {\pm} 0.0032 \mbox{ ps}^{-1} \end{split}$$

• HFAG combination (including D∅ and CDF measurements):

 $\phi_s^{c\bar{c}s} = -0.034 \pm 0.033 \text{ rad}$ $\Delta\Gamma_s = 0.082 \pm 0.006 \text{ ps}^{-1}$

Compatible with SM estimations!

In order to increase the statistics of the data and to improve the accuracy of \mathcal{CP} violating phase ϕ_s measurement, the analysis of e^+e^- mode in $B_s^0 \to J/\psi\phi$ decays is underway

Experimental problems:

- e^+e^- irradiative Bremsstrahlung photons \Rightarrow degradation of the B_s^0 and J/ψ mass resolution;
- Large electromagnetic and hadronic background in the electromagnetic calorimeter;
- Different trigger than in the $\mu\mu$ channel final state

[PRD 87 (2013) 112010]

•
$$\mathcal{BR}(J/\psi \to \mu^+\mu^-) = (5.961 \pm 0.033)\%$$
 • $\mathcal{BR}(J/\psi \to e^+e^-) = (5.971 \pm 0.032)\%$

• Estimated yield of e^+e^- channel is ~ 10% of the leading $B^0_s \to J/\psi(\mu\mu)\phi(K^+K^-)$ mode

- Using LHCb data collected in Run I (3 fb⁻¹):
 - \approx 96 000 $B_s^0 \rightarrow J/\psi(\mu\mu)\phi(KK)$ signal candidates were selected
 - ϕ_s and $\Delta\Gamma_s$ were measured with the best world accuracy

 $\phi_s^{c\bar{c}s} = -0.010 \pm 0.039$ rad

 $\Delta\Gamma_{\text{s}} = 0.0805 \pm 0.0091 \pm 0.0032 \ \text{ps}^{-1}$

- All mesurements are in agreement with the Standard Model predictions and with the results of other experiments
- $B^0_s o J/\psi(ee)\phi(K^+K^-)$ decays is underway:
 - Estimated number of signal events is $\approx 10\ 000$ for 3 fb⁻¹ (2011+2012 data)
 - e^+e^- channel could bring $\sim 10\%$ of the leading $B_s^0 \rightarrow J/\psi(\mu\mu)\phi(K^+K^-)$ mode statistics
- Future estimations for LHCb: [LHCb-PUB-2014-040]

Decay mode	Run I (3 fb ⁻¹)	Run II (8 fb ⁻¹)	LHCb upgrade	Theory
$\sigma_{stat}(\phi_{s})$ [rad]	(2010-2012)	(2015-2018)	(+2024, 46 fb ⁻¹)	limit
$B_{s}^{0} \rightarrow J/\psi K^{+}K^{-}$	0.049	0.025	0.009	~ 0.003

Thank you for your attention

Backups

The Cabibbo-Kobayashi-Maskawa matrix is a 3×3 unitary matrix which consists of information about flavour changing weak decays

$$\begin{pmatrix} u \\ c \\ t \end{pmatrix} \leftrightarrow \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d \\ s \\ b \end{pmatrix} \qquad \underbrace{i \quad V_{ij} \quad J}_{X}$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$
$$\lambda \approx 0.22$$

i

The $B_s^0 \to J/\psi \phi$ decays

The amplitude for $\bar{b} \rightarrow \bar{c}c\bar{s}$ decay maybe expressed as a combination of:

- a tree amplitude (A_T)
- the penguin amplitude (P_u, P_c, P_t)

$$\mathbf{A} = V_{cs}V_{cb}^*A_T + V_{us}V_{ub}^*P_u + V_{cs}V_{cb}^*P_c + V_{ts}V_{tb}^*P_t$$

$$= \underline{V_{cs}V_{cb}^*(A_T + P_c - P_t)} + V_{us}V_{ub}^*(P_u - P_t)$$

where
$$V_{ts}V_{tb}^*=-V_{us}V_{ub}^*-V_{cs}V_{cb}^*$$

- $V_{cs} V_{cb}^* \sim A \lambda^2 (1 \lambda^2/2)$ and $V_{us} V_{ub}^* \sim A \lambda^4 (\rho + i\eta)$,
- the $B^0_s
 ightarrow J/\psi \phi$ decay amplitude is dominated by one weak phase

Penguin diagram In the SM, the B_s^0 meson may change into \bar{B}_s^0 and vice versa through box diagrams $\Phi_M = 2arg(V_{ts}V_{th}^*)$

LHCD Detector			Summary
The angle m	easurements	LH TH	ch R?
The differentia	decay rates:		

 $\frac{d^4 W(\bar{B}^0_s \to J/\psi \phi)}{dt d \cos \theta d \varphi d \cos \psi} \equiv \frac{d^4 W}{dt d \Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega) \qquad \frac{d^4 W(\bar{B}^0_s \to J/\psi \phi)}{dt d \cos \theta d \varphi d \cos \psi} \equiv \frac{d^4 \bar{W}}{dt d \Omega} \propto \sum_{k=1}^{10} \bar{h}_k(t) f_k(\Omega)$

k	$h_k(t)$	$\overline{h}_k(t)$	$f_{k}(heta,\psi,arphi)$
1	$ A_0(t) ^2$	$ \bar{A}_{0}(t) ^{2}$	$2\cos^2\psi(1-\sin^2 heta\cos^2arphi)$
2	$ A_{\parallel}(t) ^2$	$ \bar{A}_{\parallel}(t) ^2$	$\sin^2\psi(1-\sin^2 heta\sin^2arphi)$
3	$ A_{\perp}(t) ^2$	$ \bar{A}_{\perp}(t) ^2$	$\sin^2\psi\sin^2 heta$
4	$ A_{S}(t) ^{2}$	$ \bar{A}_{S}(t) ^{2}$	$\frac{4}{3}\sin^2\theta$
5	$\Im\{A^*_{\parallel}(t)A_{\perp}(t)\}$	$\Im \{ ar{A}^*_{\parallel}(t) ar{A}_{\perp}(t) \}$	$-\sin^2\psi\sin2 heta\sinarphi$
6	$\Re\{A_0^*(t)A_{\parallel}(t)\}$	$\Re{ar{A}^*_0(t)ar{A}_{\parallel}(t)}$	$rac{1}{\sqrt{2}}\sin 2\psi \sin^2 heta\sin 2\varphi$
7	$\Im\{A_0^*(t)A_{\perp}(t)\}$	$\Im\{ar{A}_0^*(t)ar{A}_\perp(t)\}$	$\frac{1}{\sqrt{2}}$ sin 2 ψ sin 2 θ cos φ
8	$\Re\{A_{S}^{*}(t)A_{\parallel}(t)\}$	$\Re\{ar{A}^*_{S}(t)ar{A}_{\parallel}(t)\}$	$-\frac{2}{3}\sqrt{6}\sin\psi\sin 2\theta\cos\varphi$
9	$\Im\{A^*_{S}(t)A_{\perp}(t)\}$	$\Im{\{\bar{A}^*_{S}(t)\bar{A}_{\perp}(t)\}}$	$\frac{2}{3}\sqrt{6}\sin\psi\sin 2\theta\sin\varphi$
10	$\Re\{A_S^*(t)A_0(t)\}$	$\Re\{\bar{A}_{S}^{*}(t)\bar{A}_{0}(t)\}$	$\frac{8}{3}\sqrt{3}\sin^2\theta\cos\psi$

for particles \uparrow

for antiparticles ↑

			000000		ounnury
Amplitudes for	B_s^0	$ ightarrow J/\psi\phi$		<i>Lнср</i> Гнср	R
$ A_0(t) ^2$	=	$ A_0 ^2 e^{-\Gamma_{\boldsymbol{s}} \boldsymbol{t}} [\cosh\left(\frac{\Delta \Gamma}{2}\right)]$	$\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\left(\frac{\Delta\Gamma_{s}t}{2}\right)$	$pm \phi_s \sin(\Delta m_s t)]$	
$ A_{\parallel}(t) ^2$	=	$ A_{\parallel} ^2 e^{-\Gamma_{\boldsymbol{s}} \boldsymbol{t}} [\cosh\left(\frac{\Delta \Gamma}{2}\right)]$	$\left(\frac{\Delta\Gamma_{st}}{2}\right) - \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma_{st}}{2}\right) + \sin\left(\frac{\Delta\Gamma_{st}}{2}\right)$	$(\Delta m_s t)$ sin $(\Delta m_s t)$	
$ A_{\perp}(t) ^2$	=	$ A_{\perp} ^2 e^{-\Gamma_{st}} [\cosh\left(\frac{\Delta}{2}\right)]$	$\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right)$ - sin	$(\Delta m_{s} t)$ sin $(\Delta m_{s} t)$	
$ A_{\boldsymbol{S}}(t) ^2$	=	$ A_{\mathbf{S}} ^{2}e^{-\Gamma_{\mathbf{S}}t}[\cosh\left(\frac{\Delta}{2}\right)]$	$\left(\frac{\Delta\Gamma_{st}}{2}\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma_{st}}{2}\right)$ - sin	$(\Delta m_{s} t)$ sin $(\Delta m_{s} t)$	
$\Im\{A^*_{\parallel}(t)A_{\perp}(t)\}$	=	A A _⊥ e [−]	$\Gamma_{\boldsymbol{s}\boldsymbol{t}}[-\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{\boldsymbol{s}}\sinh\Big($	$\frac{\Delta\Gamma_{st}}{2}$	
		+ $\sin(\delta_{\perp} - \delta_{\parallel})$	$\cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos \phi$	$s\sin(\Delta m_s t)]$	
$\Re\{A^*_{0}(t)A_{\parallel}(t)\}$	=	$ A_0 A_{\parallel} e^{-i\mathfrak{st}}\cos$	$(\delta_{\parallel} - \delta_{0}) [\cosh\left(\frac{\Delta i g t}{2}\right) - \cos\phi_{g}]$	$\sinh\left(\frac{\Delta \mathbf{g} }{2}\right)$	
			$+ \sin \phi_s \sin(\Delta m_s t)]$		
$\Im\{A^*_{0}(t)A_{\perp}(t)\}$	=	$ A_0 A_\perp e^-$	$\int \mathbf{s}^{\mathbf{r}} [-\cos(\delta_{\perp} - \delta_{0}) \sin \phi_{\mathbf{s}} \sinh (\mathbf{s}) + \delta_{0} \sin \phi_{\mathbf{s}} \sinh (\mathbf{s}) + \delta_{0} \sin \phi_{\mathbf{s}} \sin \phi_{\mathbf{s}}$	$\frac{\Delta \mathbf{r}_{st}}{2}$	
•••		+ $\sin(\delta_{\perp} - \delta_0)$	$\cos(\Delta m_{\mathbf{s}} t) - \cos(\delta_{\perp} - \delta_{0}) \cos \phi_{\mathbf{s}}$	$s\sin(\Delta m_s t)]$	
$\Re\{m{A}^*_{m{S}}(t)m{A}_{\parallel}(t)\}$	=	$ A_{\boldsymbol{S}} A_{\parallel} e^{-}$	$-\Gamma_{\boldsymbol{s}} t [-\sin(\delta_{\parallel} - \delta_{\boldsymbol{s}}) \sin \phi_{\boldsymbol{s}} \sinh \left(\frac{\delta_{\parallel}}{2} + \delta_{\boldsymbol{s}} \right)]$	$\left(\frac{\Delta \Gamma_{st}}{2}\right)$	
		+ $\cos(\delta_{\parallel} - \delta_{\boldsymbol{S}})$	$\cos(\Delta m_{s}t) - \sin(\delta_{\parallel} - \delta_{s})\cos\phi_{s}$	$sin(\Delta m_s t)]$	
$\Im\{A_{c}^{*}(t)A_{\perp}(t)\}$	=	$ A_{\boldsymbol{S}} A_{\perp} e^{-\Gamma_{\boldsymbol{S}}\boldsymbol{t}}-\mathrm{s}\boldsymbol{t}$	$in(\delta_{\perp} - \delta_{\boldsymbol{S}})[cosh\left(\frac{\Delta\Gamma_{\boldsymbol{S}}\boldsymbol{t}}{2}\right) + cosh(\boldsymbol{\delta}_{\perp})$	$\phi_{s} \phi_{s} \sin(\Delta m_{s} t)$	
· (· · 3 (·)··±(·))			$- \sin \phi_s \sin(\Delta m_s t)]$		
$\Re \{ \Delta^*_{+}(t) \Delta_{0}(t) \}$	_	$ A_{\boldsymbol{S}} A_{\boldsymbol{0}} e^{-}$	$-\Gamma_{\boldsymbol{s}} t [-\sin(\delta_{\boldsymbol{0}} - \delta_{\boldsymbol{s}})\sin\phi_{\boldsymbol{s}}\sinh\left(\frac{d}{d}\right)]$	$\left(\frac{\Delta \Gamma_{st}}{2}\right)$	
ντ σς (τ)σο(τ)ς	-	+ $\cos(\delta_0 - \delta_s)$	$\cos(\Delta m_{s}t) - \sin(\delta_{0} - \delta_{s})\cos\phi_{s}$	$sin(\Delta m_s t)]$	
V. Batozskaya, NCBJ, Warsav	v, Polar	nd	\mathcal{CP} Violation in	LHCb	14 / 14

 \mathcal{CP} Violatio

Measurement in LHCb

The flavour tagging of initial B_s^0

<u>инср</u>

- Since B⁰_s and B⁰_s mixing we need to tag the initial flavour state
- In LHCb is used two types of tagging:
 - same side charge kaon which is correlated with B⁰_s
 - opposite side charge lepton or kaon from second B decay
- To check the tagging algorithm similar and self tagging decays to signal are used:
 B⁺ → J/ψK⁺ for OS and
 B⁰_s → D⁻_sπ⁺ for SS
- P P Vertex tagger Vertex tagger K K tagger
- Estimated the efficiency of the algorithm:
 - tagging efficiency etag
 - corrected mistag probability ω
 - total efficiency $\epsilon_{eff} = \epsilon_{tag} (1-2\omega)^2 = (3.73 \pm 0.15)\%$ for $B_s^0 \to J/\psi(\mu\mu)\phi$

 \mathcal{CP} Violation in LHCb

The results of the parameters measurement

 \mathcal{CP} violation measurements in Run I data from LHCb, ATLAS and CMS: Measurement of ϕ_s in $b \rightarrow c\overline{c}s$ modes:

- LHCb $(B^0_s \to J/\psi K^+ K^-, B^0_s \to J/\psi \pi^+ \pi^-, 3 \text{ fb}^{-1}): \phi^{c\bar{c}s}_s = -0.010 \pm 0.039 \text{ rad}$
- ATLAS $(B_s^0 \to J/\psi K^+ K^-, 19.2 \text{ fb}^{-1}): \phi_s^{c\bar{c}s}$ =-0.094±0.083±0.033 rad
- CMS $(B_s^0 \to J/\psi K^+ K^-, 19.7 \text{ fb}^{-1}): \phi_s^{c\bar{c}s}$ =-0.075±0.097±0.031 rad

Measurement of $\Delta \Gamma_s$ in $B_s^0 \rightarrow J/\psi K^+ K^-$ modes:

- LHCb (3 fb⁻¹): $\Delta\Gamma_s$ =0.0805±0.0091±0.0032 ps⁻¹
- ATLAS (19.2 fb⁻¹): $\Delta\Gamma_s$ =0.082±0.011±0.007 ps⁻¹
- CMS (19.7 fb^{-1}): $\Delta\Gamma_s$ =0.095±0.013±0.007 ps^{-1}

