Study of diffractive bremsstrahlung at 13 TeV LHC

Sabina Czekierda

IFJ PAN

XXII Cracow Epiphany Conference 7-9 January 2016

supported in part by NCN grant UMO-2012/05/B/ST2/02480

Sabina Czekierda

Study of diffractive bremsstrahlung at 13 TeV

7-9 January 2016 1 / 12

<

<h /
<h />
<h /

• maximum for $\theta_{\gamma} \approx \frac{1}{\gamma_{\rm p}}$ • at $\sqrt{s} = 13$ TeV: $\theta_{\gamma} \approx 10^{-4}$ rad $\Leftrightarrow \eta \approx 14$

• large $|\eta_{\gamma}|$ region

・ロト ・ 日 ・ ・ 目 ・ ・

electromagnetic bremsstrahlung

• at $\sqrt{s} = 13$ TeV and $100 < E_{\gamma} < 1500$ GeV: $\sigma_{int}^{em} \approx 50$ nb, $\sigma_{int}^{diff} \approx 2 \,\mu b$

• angular distribution:
$$\frac{d\sigma}{d\theta_{\gamma}} \sim \frac{\theta_{\gamma}}{\left[\theta_{\gamma}^2 + \left(\frac{1}{\gamma_{\rm p}}\right)^2\right]^2}$$

• maximum for $\theta_{\gamma} \approx \frac{1}{\gamma_{\rm p}}$ • at $\sqrt{s} = 13$ TeV: $\theta_{\gamma} \approx 10^{-4}$ rad $\Leftrightarrow \eta \approx 14$

• large $|\eta_{\gamma}|$ region

diffractive bremsstrahlung

(日) (四) (日)

ZDC EM – photon

- 140 m from IP
- $|\eta|$ > 8.3 (91.4 mm imes 180 mm)

•
$$\sigma(\mathsf{E})pprox$$
 8 GeV (at $\mathsf{E}=$ 100 GeV)

▲□▶ ▲圖▶ ▲厘≯

ZDC EM – photon

- 140 m from IP
 - $|\eta|$ > 8.3 (91.4 mm imes 180 mm)

•
$$\sigma(\mathsf{E})pprox$$
 8 GeV (at $\mathsf{E}=$ 100 GeV)

▲□▶ ▲圖▶ ▲厘≯

AFP – proton	ZDC EM – photon
• 210 m from IP	• 140 m from IP
• $0.02 < \xi < 0.12$, $\xi = \frac{\Delta E}{E_{e}}$	$ullet$ $ \eta $ $>$ 8.3 (91.4 mm $ imes$ 180 mm)
• $\sigma(E) \approx 10 \text{ GeV}$	• $\sigma(\mathbf{x}) = 0.5 \text{ mm}$
	• $\sigma(E) pprox 8$ GeV (at $E = 100$ GeV)

< □ > < 同 >

AFP – proton	ZDC EM – photon
• 210 m from IP	• 140 m from IP
• $0.02 < \xi < 0.12$, $\xi = \frac{\Delta E}{E_{beam}}$ • $\sigma(E) \approx 10$ GeV	• $ \eta > 8.3$ (91.4 mm × 180 mm)
	• $\sigma(x) = 0.5 \text{ mm}$
	• $\sigma(E) pprox 8$ GeV (at E = 100 GeV)

< 口 > < 同

Signal

• signal generated with the GenEx generator, $E_{\rm beam} = 6.5$ TeV

Signal, bremsstrahlung photons

(日)

Bremsstrahlung signature	Detectors' energy resolution cuts
\bullet one proton in AFP_{S}	• $ E_{\mathrm{AFP}_{\mathrm{S}}} + E_{\mathrm{ZDC,EM}_{\mathrm{S}}} - E_{\mathrm{beam}} < 60.9 \text{ GeV}$
$ullet$ one photon in ZDC $_{ m S}$	 absence of particles in other detectors
	• $E_{\rm ZDC,\ EM_{O}}$ $<$ 10 GeV $\ $ (EM ZDC on the O side)
	$\bullet~E_{\rm ZDC,H_{O/S}}$ < 50 GeV (hadronic ZDC)
	• $\left \eta_{\mathrm{charged}} ight $ > 2.5 or p_{\mathrm{T}} < 0.5 GeV $$ (Inner Detector)
	• E < 1 GeV or $ \eta $ > 4.8 (Calorimeter)

- $\bullet\,$ background generated with PYTHIA 8.2, $\mathsf{E}_{\rm beam}=6.5$ TeV, diffractive and non-diffractive processes included
- main contribution: $p + p \rightarrow p + p + \pi^0 \rightarrow p + p + \gamma + \gamma$

Background

Background, neutral EM particles

< 17 →

Summary

- analysis of the diffractive bremsstrahlung for 13 TeV was performed
- electromagnetic bremsstrahlung constitues only a small correction to the diffractive bremsstrahlung (about 2.5%)
- $\bullet\,$ obtained fiducial cross sections: ~ 850 nb for signal and $\sim 20~\mu{\rm b}$ for background
- present signal to background ratio requires further background reduction

Outlook

- optimization of cuts: introducing cut for the distance from the center of the ZDC for the photon reaching ZDC
- enhancement of veto for the background: LUCID detectors (p_T > 2.8 GeV, 5.61 $<|\eta|<$ 5.93)
- implementation the proton transport (for various optics)

(日)

Thank you for the attention!

< 口 > < 同

Backup

• distance between the protons in ZDC when more than one photon reaches ZDC, I exploit an electromagnetic cascade reconstruction properties (photons are being seen as one photon in ZDC, when every $r_{\rm ij}<6~{\rm mm})$

Application of the diffractive bremsstrahlung

- determination of the luminosity
- determination of the elastic cross section for the proton-proton elastic elastic scattering
- energy calibration of the AFP detector

•
□
▶
•
□
▶
•
□