

Selected CPV results from LHCb Run I and prospects for CKM γ measurements in Run II

Agnieszka Obłąkowska-Mucha AGH UST Kraków on behalf of LHCb Collaboration

> XXII Krakow Epiphany Conference 7-9.01.2016

- I. Three ways of CPV
- II. Selected CPV results from LHCb:
 - $sin 2\beta$ in $B^0 \rightarrow J/\psi K_S^0$
 - CPV in decays (direct) via $B \rightarrow hh$, hhh
 - CKM γ angle with $B \rightarrow DK$
 - search for CPV in charm
- III. Prospects for measurements in Run II
- IV. Summary

See also other talks @ this conference:

- Past present and future of the LHCb detector
- LHCb measurements at 13 TeV
- Highlights of LHCb measurement in rare decays with Run1 data
- Determination of CP-violating phase ϕ_S in $B^0_S \rightarrow J/\psi \ \phi$ decay

CP Violation in SM

AG H

- Within the framework of the Standard Model CP Violation effects arise from the CKM matrix parameters.
- The predicted CP asymmetry in the SM is not sufficient to explain the baryon dominance in the Universe.
- New Physics CPV effects would be warmly welcomed.

- Four free parameters to (over-)constrain
- So let's measure (very precisely) CPV in the SM and try to see if any differences emerge.

The unitary triangle

A G H

- We assume the CKM matrix is **unitary.**
- The unitary condition can be represented in a complex plane as unitary triangles.
- Among them there is one of a special meaning:

 Experimentally the observation of CPV effects involve measuring the sides and angles of the UT

Three types of CP Violation

Where do we hope to find CP Violation effects?

Whenever a quark's flavour change occurs!

Excellent performance:

3 fb⁻¹ accumulated in RUN I Excellent Decay time resolution $\sim 50 fs$ Precise tracking: $\delta p/p \sim 0.4 - 0.6\%$ Particle identification 2 - 100 GeV/c

Let's see how it's going...

LHCb

0

Kicp sin 2β measurement strategy

 $B^0 \rightarrow I/\psi K^0_S$ The first observation made by BaBar and Belle in 2001. ϕ_{Dec} The sensitivity to angle β comes from the $B^0 \leftrightarrow \overline{B}^0$ mixing: $\beta = \arg\left(-\frac{V_{td}V_{tb}}{V_{ud}V_{ub}^*}\right)$ CPV in interference between direct decays $B^0 \to f$ and decays after mixing, $B^0 \to \overline{B}{}^0 \to f$ mixing The decay width are sensitive to $\phi = \phi_M - 2\phi_{Dec}$ ϕ_M W^{-} J/ψ b B^0 \overline{B}^0 t S K_S^0 W^+ đ $e^{-i\phi}$ $\Gamma(B \to J/\psi \ K_S) = \left| A e^{-imt - \Gamma t} \left(\cos \frac{\Delta m t}{2} + e^{-i\phi} \sin \frac{\Delta m t}{2} \right) \right|^2 \quad \phi = 2\beta$

$\frac{\mu c b}{\mu c p}$ sin 2 β - the results

Phys.Rev.Lett. 115 (2015) 031601

Time dependent assymmetry (relies strongly on flavour tagging)

- 114 000 signal candidates (41 000 tagged)
- need a handle on penguin pollution $sin 2\beta \rightarrow sin(2\beta + \phi_{NP})$

$$A_{CP}(t) = \frac{\Gamma\{B \to J/\psi \ K_S\} - \Gamma\{\overline{B} \to J/\psi \ K_S\}}{\Gamma\{B \to J/\psi \ K_S\} + \Gamma\{\overline{B} \to J/\psi \ K_S\}} = -\sin 2\beta \sin \Delta mt$$

$$A_{CP}(t) = S \sin(\Delta m t)$$

new result from $\mathcal{L} = 3fb^{-1}$

$\frac{LHCb}{LHCP}$ sin 2 β summary of the results

 $B^0 \rightarrow J/\psi K_S^0$ is a "golden mode" for CP violation in B^0 meson system.

The world average is:

 $\sin 2\beta = 0.682 \pm 0.019$

The SM expectation:

 $\sin 2\beta(SM) = 0.771^{+0.017}_{-0.041}$

The values are consistent with the current world averages and with the Standard Model expectations. The most precise time-dependent CP violation measurement at hadron colliders. The precision is competitive with B-factories

 $S = 0.731 \pm 0.035(stat) \pm 0.020(syst)$

- Large asymmetries are expected in the interferences between trees and penguin diagrams.
- First direct CPV in beauty sector:

2004 $B^0 \rightarrow K^+\pi^-$ Belle & BaBar

Phys.Rev.Lett. 87 (2001) 0091801 Phys.Rev.Lett. 87 (2001) 0091802

 $2013 B_S^0 \to K^- \pi^+ LHCb$

Direct (time integrated) CP asymmetry:

 $A_{CP} = \frac{\Gamma\{\overline{B} \to K^+\pi^-\} - \Gamma\{B \to K^-\pi^+\}}{\Gamma\{\overline{B} \to K^+\pi^-\} + \Gamma\{B \to K^-\pi^+\}}$

- available with flavour tagging opposide side, same-side pion (new),
- with the determination of production and detection asymmetry

LHCP Direct CPV in $B_S \rightarrow K\pi$ – the results

• This is the most precise measurement to date:

 $A(B^0 \rightarrow K^+\pi^-) = -8.0 \pm 0.7 \pm 0.3 \%$ significance 10.5 σ .

• First observation of direct CPV in B_S^0 meson: $A(B_S^0 \rightarrow K^- \pi^+) = 27 \pm 4 \pm 1\%$

with significance 6.5 σ

Consistent with SM

<u>LHCb</u> Direct CP violation in $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$

- Rich resonance structure, variety of strong phases,
- CP asymmetries ∝ weak and strong phase differences (Dalitz plots)
- Large asymmetries in low mass (*KK*) and (ππ) region (final state rescattering?), the CP asymmetries are positive for pions, negative for kaons

$$\begin{split} A_{CP}(B^{\pm} \to \pi^{\pm} K^{+} K^{-}) &= -0.123 \pm 0.017 \pm 0.012 \pm 0.007 \ 5.6 \ \sigma \\ A_{CP}(B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) &= +0.058 \pm 0.008 \pm 0.009 \pm 0.007 \ 4.2 \ \sigma \\ A_{CP}(B^{\pm} \to K^{\pm} \pi^{+} \pi^{-}) &= +0.025 \pm 0.004 \pm 0.004 \pm 0.007 \ 2.8 \ \sigma \\ A_{CP}(B^{\pm} \to K^{\pm} K^{+} K^{-}) &= -0.036 \pm 0.004 \pm 0.002 \pm 0.007 \ 4.3 \ \sigma \end{split}$$

Phys.Rev.D90(2014)112004

AGH

A.Obłąkowska-Mucha (AGH UST Kraków)

- 1. The γ angle is the only one that can be determined from tree only processes, no loop diagrams, no New Physics
- 2. The weak phase γ can be measured in the interference of $b \rightarrow c$ and $b \rightarrow u$ decays.
- 3. Theoretically clean: $\delta \gamma / \gamma \leq \mathcal{O}(10^{-7})$
- 4. So far has the worst precision:

CKM γ angle

- a) direct measurements:
 - BaBar: $\gamma = (69 \pm 17)^{\circ}$,
 - Belle: $\gamma = (68 \pm 15)^{\circ}$
- b) indirect measurements (dominated by loops): $(66.9^{+1.0}_{-3.7})^{\circ}$
- 5. CKM fitter 2015: $\gamma = (73.2^{+6.3}_{-7.0})^{\circ}$

 $\gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$

trees - direct

12

γ combination in LHCb

- 6. Direct, time integrated measurements: $B^{\pm 0} \rightarrow D^0 K^{\pm *0}$
- 7. Mixing induced, time dependent analysis: $B_S^0 \rightarrow D_S^{\pm} K^{\pm}$

The 2014 combination for γ measurement (LHCb-CONF-2014-004)

mixture of $\mathcal{L} = 3fb^{-1}$ and $\mathcal{L} = 1fb^{-1}$ measurements

LHCb Analysis $B^+ \to DK^+, D \to hh, \text{GLW/ADS}$

 $\begin{array}{c} B^+ \rightarrow DK^+, \, D \rightarrow K\pi\pi\pi, \, \mathrm{ADS} \\ \\ B^+ \rightarrow DK^+, \, D \rightarrow K^0_{\mathrm{s}} hh, \, \mathrm{model-} \\ \\ \mathrm{independent} \, \mathrm{GGSZ} \\ \\ \\ B^+ \rightarrow DK^+, \, D \rightarrow K^0_{\mathrm{s}} K\pi, \, \mathrm{GLS} \\ \\ \\ B^0 \rightarrow DK^{*0} \, \mathrm{GLW/ADS} \end{array}$

 $B^0_s \to D^{\mp}_s K^{\pm}$

$\overset{hich}{\longrightarrow} \mathsf{CKM} \ \gamma \text{ angle from } B^{\pm} \to DK^{\pm}$

$$A_{CP} = \frac{\Gamma\{B^- \to D^0 K^-\} - \Gamma\{B^+ \to D^0 K^+\}}{\Gamma\{B^- \to D^0 K^-\} + \Gamma\{B^+ \to D^0 K^+\}} \propto \sin \gamma$$

- 1. Sensitive to the γ when D^0 and $\overline{D^0}$ decay to the same final state.
- 2. The interference of these two amplitudes depends on their relative magnitudes one of them is usually suppressed.

 $A(B^{-} \to K^{-} f) \sim A(D \to f) + r_{B} e^{i(\delta_{B} - \gamma)} A(\overline{D} \to f)$ $r_{B} e^{i\delta_{B}} = \frac{A(B^{-} \to \overline{D}K^{-})}{A(B^{-} \to DK^{-})}$

- 3. Hadronic unknows: r_B and δ_B
- 4. Different experimental techniques (GLW, ADS, GGSZ).
- 5. Plenty (>16) of final states : new!
 - $D \rightarrow CP$ eigenstates: $K^+K^-, \pi^+\pi^-(K^+K^-\pi^0, \pi^+\pi^-\pi^0)$
 - $D \rightarrow CP$ flavour specific: $K^+\pi^-$, $K^+\pi^-\pi^+\pi^-$, $K_SK^+\pi^-$
 - $D \rightarrow 3$ body self-conjugated: $K_S \pi^+ \pi^-, K_S K^+ K^-$

$\overset{\text{\tiny HCb}}{\longrightarrow} \operatorname{CKM} \gamma \text{ angle from } B^{\pm} \to DK^{\pm}$

AGH

- NEW!
 Phys. Rev. D 92, 112005 (2015)
 AGH
- Inclusive analysis of the process: $B^{\pm} \rightarrow DX_{S}^{-}$, where $X_{S}^{-} = K^{-}\pi^{+}\pi^{-}$ and $D \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}, K^{\pm}\pi^{\mp}$

In the Standard Model:

- expected CPV in charm sector is small $\leq 10^{-3}$
- New Physics contributions enhance CPV up to 10⁻²

LHCb measurement of the A_{Γ} asymmetry from $D^0 \to K^+ K^-$, $D^0 \to \pi^+ \pi^-$:

The asymmetry of the decay frequencies of D^0 and $\overline{D}{}^0$ to CP- eigenstates $D^0 \to K^+ K^-$, $D^0 \to \pi^+ \pi^-$

$$A_{\Gamma} \equiv \frac{\Gamma(D^{0} \to K^{+}K^{-}) - \Gamma(\bar{D^{0}} \to K^{+}K^{-})}{\Gamma(D^{0} \to K^{+}K^{-}) + \Gamma(\bar{D^{0}} \to K^{+}K^{-})} \approx \left(\frac{1}{2}A_{m} + A_{d}\right)y\cos\phi - x\sin\phi$$

$$A_{m} \equiv \frac{|q_{p}'|^{2} - |p_{q}'|^{2}}{|q_{p}'|^{2} + |p_{q}'|^{2}} \qquad \bigwedge \qquad A_{d} \equiv \frac{|A_{f}|^{2} - |\bar{A}_{f}|^{2}}{|A_{f}|^{2} + |\bar{A}_{f}|^{2}}$$
in the mixing in the decay amplitudes

JHEP 04 (2015) 043, 3 fb⁻¹

 $B^0
ightarrow D^0 \mu^- X$ and $B^0
ightarrow \overline{D}{}^0 \mu^- X$

 A_{Γ} is a measure of indirect CPV, since the contribution from direct CPV is considered as very small.

LHCb Prospects for γ in Run II

1. What are the requirements for better precision for the γ angle?

the theoretical predictions are of order of 10⁻⁷ (no penguins), so the only quest is to obtain:

- more data,
- more signal events to perform time dependent analysis of more challenging channels as $B_S^0 \to D_S^{\pm *} K^{\pm *}$
- more signal in suppressed modes,
- less background,
- no loss in tracking performance & vertex resolution.
- 2. The higher energy @ Run II means 2x higher bb crosssection
- 3. During Run II LHCb detector will benefit from novel approach to trigger performance.
- 4. The trigger is optimized to reconstruct charm events with greater efficiency .

We expect close to 10 fb⁻¹ of data Run II (2016-18) The precision for γ of the order of $\sigma(\gamma) \sim 4^{\circ}$

The TURBO stream power

This idea is quite amazing!

- 1. Let's save only the trigger level objects that caused it to "fire"
 - Tracks and vertices
 - No raw data is stored for the TURBO

- 2. Huge gain
 - The event size is much smaller
 - No reprocessing
 - Analysis much faster

Used for high yield exclusive modes (charm)

Plots obtained directly after the HLT

Background almost non existent

The number of events much higher that in RUN I

- LHCb is the experiment to study CP Violation. 1.
- After three years of data taking in data with B decays: 2.
 - weak phases: a)

 $\sin 2\beta = 0.731 \pm 0.035(stat) \pm 0.020(syst)$

 γ obtained with variety of methods in $B \rightarrow DK$ decays,

- Direct CP Violation observed in $B \rightarrow h^+h^-(h^-)$ b)
- ALL within the Standard Model limits LHCb managed to achieve precision comparable with or better than 3. B factories in β and made a great progress in the γ angle measurement

AGH