

# Gamma and neutral mesons with ALICE

#### Adam Matyja on behalf of the ALICE collaboration **IFJ PAN Kraków**

XXII Cracow Epiphany Conference on the Physics in LHC Run2 7 - 9 January 2016 Kraków, Poland



Thanks to National Science Centre, Poland, DEC-2012/05/D/ST2/00855

### Outline

- Motivation
- ALICE detector
- ➢ Results
  - $\succ$   $\pi^0$  mesons in pp and Pb-Pb
  - $\succ$   $\eta$  mesons in Pb-Pb
  - >  $\pi^0$  hadron correlations
  - Direct photons
- First look into calorimeters results
- ➢ Summary

### Motivation

- Investigate properties of nuclear matter at high temperature ( $T \ge 170$  MeV) and density
- Important input for the understanding of the confinement and the chiral symmetry restoration (transition from quark to hadronic matter)
- Explore QCD in unknown regimes → study QCD phase diagram
- QGP produced < 10<sup>-6</sup> s after Big Bang
- We should search for QGP phase and measure its properties
- LHC gives us the great opportunity via heavy ion collisions ("little Big Bangs")





### Why photons and mesons?

- Both, photon and meson production are described by pQCD in pp collisions
- Inclusive meson production spectrum is necessary for direct photons search
- pp and p-Pb provide reference data to compare with AA
- Temperature estimation via measurement of p<sub>T</sub> distribution of direct photons
- Jet suppression via medium induced modification of π<sup>0</sup> meson distribution
- Neutral hadrons carry information about medium
  - Studies of transport properties of quark-gluon matter
  - Initial gluon density
  - ⇒ constraint of parameters of theoretical models in both perturbative (NLO, NNLO) and non-perturbative regime (structure function, fragmentation function)
- π<sup>0</sup> hadron correlation are important step in direct photon – hadron correlation
- Studies of jet modification by presence of hot and dense matter



#### ALICE detector



#### Tracking

- $\mid \eta \mid < 0.9, \, 0 < \varphi < 2\pi$
- TPC gas drift detector
- ITS silicon detector

#### **EMCal**

- Pb-scintillator sampling calorimeter
- $|\eta| < 0.7, 80^{\circ} < \phi < 180^{\circ}$

PHOS

- PbWO<sub>4</sub> crystal spectrometer
- $|\eta| < 0.13, 260^{\circ} < \phi < 320^{\circ}$

• V0

Centrality determination

#### Method of neutral meson extraction

- Ways of neutral meson measurement via invariant mass analysis in ALICE
   → photon pairs or external conversion electrons
  - $h \rightarrow \gamma + \gamma$  (PHOS, EMCal)
  - $h \rightarrow \gamma (\rightarrow e^+ e^-) + \gamma (\rightarrow e^+ e^-)$  (PCM)
    - Small conversion probability (~ 8.5 %) is compensated by a wide acceptance.



Reconstructed  $\pi^0$  candidate

through conversions

2016-01-8



### Invariant mass



 $\pi^0$  mesons

#### New results of $\pi^0$ production in pp at $\sqrt{s} = 8$ TeV



- Measurement with PHOS.
- Wide  $p_T$  range:  $1 < p_T < 40$  GeV/c.
- Data described by many functions: Tsallis, Hagedorn, power law.
- NLO pQCD MSTW+DSS14 describes data better than CTEQ6.6+BFGII.
- Increasing discrepancy as function of p<sub>T</sub>.

8



### $\pi^0$ spectra in pp

- Agreement between data and NLO pQCD (PRD 91 (2015) 1, 014035) at  $\sqrt{s}$  = 0.9 and 2.76 TeV.
  - Parton Distribution Functions: MSTW
  - Fragmentation Functions: DSS14
- For higher energies NLO pQCD overpredicts data at higher  $p_{T}$  (still)
- Power law dependence at high  $p_{T}$

| <i>√s</i> (TeV) | n                                 |
|-----------------|-----------------------------------|
| 0.9             | 7 ± 2                             |
| 2.76            | $6.0\pm0.5$                       |
| 7.0             | $\textbf{6.04} \pm \textbf{0.14}$ |
| 8.0             | $5.94\pm0.15$                     |

For  $\sqrt{s} = 0.2$  TeV:  $n = 8.22 \pm 0.1$ 

#### $\pi^0$ mesons

### $\pi^0$ spectra in Pb-Pb @ $\sqrt{s_{NN}}$ = 2.76 TeV





Nemchik: PRC 86, 054904 (2012):

Low  $p_{T}$ : Hydrodynamic description High  $p_{T}$ : Color dipole absorption.

Best agreement for most central collisions

6 centrality classes in Pb-Pb collisions

2016-01-8

10

### Nuclear modification factor

$$R_{AA}(p_{T}) = \frac{d^2 N / dp_{T} dy|_{AA}}{\langle T_{AA} \rangle \times d^2 \sigma / dp_{T} dy|_{pp}}$$

 $N_{\rm coll} = \sigma_{\rm pp} < T_{\rm AA} >$ 

- Judges medium effect
- Contains both initial and final state effect
  - Initial state: i.e. Cronin, nuclear shadowing
  - Final state: collisional and radiative energy loss
- $R_{AA} = 1 \rightarrow$  no modification



- Very strong suppression (R<sub>AA</sub> ~ 0.1) in central Pb-Pb collisions above *p*<sub>T</sub> ≈ 3 GeV/*c*
- Agreement with results for charged hadrons

# $\sqrt{s_{_{ m NN}}}$ dependence of the $\pi^0 R_{_{ m AA}}$



ALICE: EPJC 74 (2014) 10, 3108 PHENIX: PRL 109 (2012) 152301 PHENIX: PRL 101 (2008) 232301 WA98: PRL 100 (2008) 242301

- Similar shape of  $\pi^0 R_{AA}$  for  $\sqrt{s_{NN}} = 2.76$  TeV and  $\sqrt{s_{NN}} = 200$  GeV
- The higher center of mass energy the larger suppression
- Onset of suppression between  $\sqrt{s_{NN}} = 17.3$  GeV and  $\sqrt{s_{NN}} = 39$  GeV

# $\pi^{0}$ spectra in Pb-Pb @ $\sqrt{s_{NN}}$ = 2.76 TeV, new result



- 10 times more statistics in 2011
   (L ~ 0.1 nb<sup>-1</sup>)
- Extended p<sub>T</sub> range up to 20 GeV/c
- Two complementary analyses methods: EMCal and PCM
- Two centrality classes compared to pp
- Compared to NLO pQCD pp predictions scaled by N<sub>coll</sub> (PRD 91 (2015) 1, 014035)

## η spectra in Pb-Pb @ $\sqrt{s_{NN}}$ = 2.76 TeV



- First η measurement in Pb-Pb at the LHC
- Range: 1 < p<sub>T</sub> < 20 GeV/c</p>
- Two complementary systems: EMCal and PCM
- Two centrality classes compared to pp
- Compared to η production of NLO pQCD pp predictions scaled by N<sub>coll</sub> (PRD 91 (2015) 1, 014035)

#### η, $π^0$ mesons

### $\eta/\pi^0$ ratio in Pb-Pb @ $\sqrt{s_{NN}}$ = 2.76 TeV



- Constant value of ratio above p<sub>T</sub> = 4 GeV/c.
- Comparison of  $\eta/\pi^0$  ratio for two centrality classes in Pb-Pb at  $\sqrt{s_{NN}} = 2.76$  TeV to pp result at  $\sqrt{s} = 7$  TeV  $\Rightarrow$  no significant differences.
- Theory jet quenching predictions by Wei Dai et al. (arXiv:1506.00838) compared to data.
- Good description of ratio within uncertainties.
- Comparison of η/π<sup>0</sup> ratio for two centrality classes to K<sup>±</sup>/π<sup>±</sup> ratio measured by ALICE (PLB 736 (2014) 186).
- Consistency of trend and magnitude.

#### $\pi^0$ –hadron

### $\pi^0$ -hadron correlations



- Trigger particle:
  - high- $p_{T} \pi^{0}$  identified in EMCal
  - near side
- Associated particle:
  - charged hadron
  - away side
  - coming from parton traversing through matter which emerges attenuated
- Correlation in azimuthal angle:
  - $\Delta \varphi = \varphi^{\text{trig}} \varphi^{\text{assoc}}$
- Medium induced per-trigger yield modification factor:

$$I_{AA}(p_T^{\pi^0}, p_T^{h^{\pm}}) = \frac{Y^{AA}(p_T^{\pi^0}, p_T^{h^{\pm}})}{Y^{pp}(p_T^{\pi^0}, p_T^{h^{\pm}})}$$

- Near side: information on the fragmenting jet leaving medium
- Away side: additionally reflects the probability that the recoiling parton survives the passage through the medium

# $\pi^{0}$ -h<sup>±</sup> azimuthal correlations in pp and Pb-Pb @ $\sqrt{s_{(NN)}}$ = 2.76 TeV



#### near side away side

 Both near and away peak well visible in pp

#### Per-trigger yield modification factor



- Good agreement between pi0-hadron and di-hadron correlations
- Near side enhancement ( $I_{AA} \approx 1.2$ ), probably due to:
  - Change of fragmentation function
  - Quark/gluon jet ratio modification
  - Bias on the parton p<sub>T</sub> spectrum (due to energy loss)
- Away side suppression ( $I_{AA} \approx 0.6$ ), evidence of energy loss in medium

#### Photons

#### Method of direct photon measurement

Direct photons = Inclusive photons – Decay photons

$$\gamma_{direct} = \gamma_{inc} - \gamma_{decay} = (1 - \frac{1}{R}) \cdot \gamma_{inc}$$
  $R = \frac{\gamma_{inc}}{\gamma_{decay}}$ 

- Decay photons
  - Come from photonic decays of particles like π<sup>0</sup>, η or ω
  - Main background for direct photons
- Prompt photons
  - Produced in hard scattering of quarks and gluons
  - Contribute the most to hard part of direct photon spectrum (other contributions can come from fragmentation photons)
- Thermal photons
  - Come from volume of fireball
  - Dominant source for soft part of direct photon spectrum in Pb-Pb (other contributions: e.g. jet-medium photons or ISR )





 $\gamma_{inc}$  – measured photon  $p_T$  spectrum  $\pi^0_{param}$  – fit to measured  $\pi^0$  meson  $p_T$  spectrum  $\gamma_{decay}$  – evaluated by MC  $\pi^0_{cocktail}$  – evaluated by MC

#### $R_{\gamma}$ > 1 indicates presence of direct photons

XXII Cracow Epiphany Conference

#### Photons

#### Direct photon double ratio

arXiv:1509.07324



- Agreement with NLO pQCD predictions in pp collisions @ 7 TeV
- Excess of photons in Pb-Pb for all centrality classes in high p<sub>T</sub> region compatible with pQCD predictions
- Excess of photons compared to NLO pQCD observed for  $p_T \le 4$  GeV/*c* in central Pb-Pb collisions
- Significance of 2.6  $\sigma$  for 0.9 <  $p_{\rm T}$  < 2.1 GeV/c



#### Photons

#### Direct photon spectra and $R_{AA}$





- Three centrality classes
- Range: 0.9 < *p*<sub>T</sub> < 14 GeV/*c*
- Compared with N<sub>coll</sub> scaled pQCD and JETPHOX calculations

 $\Rightarrow$  Good agreement with data for  $p_T > 5$  GeV/c

- Excess for central and semi-central collisions at low  $p_{\rm T}$
- $R_{AA} > 6$  for central Pb-Pb in low  $p_{T}$  region

#### Direct photon spectrum compared to PHENIX



For 0-20% Pb-Pb at  $\sqrt{s_{NN}}$  = 2.76 TeV

Exponential fit A∙exp(-p<sub>T</sub>/T<sub>eff</sub>) for p<sub>T</sub> < 2.2 GeV/c

 $\Rightarrow$  inv. slope  $T_{\rm eff}$  = 304 ± 11<sup>stat</sup> ± 40<sup>sys</sup> MeV

- effective temperature ~ 300 MeV →
   largest ever man-made
- Be careful with interpretation!

PHENIX:  $T_{eff} = 239 \pm 25^{stat} \pm 7^{sys}$  MeV for 0-20% Au-Au at  $\sqrt{s_{NN}} = 200$  GeV (PRL 104 (2010) 132301, PRC 91, 6 (2015) 064904)

#### Direct photon spectrum compared to theory



- Various models available
- All models assume QGP formation and include pQCD photons at high p<sub>T</sub>
- Different level of agreement
- Treatment of space-time evolution
  - Paquet et al.: 2+1 viscous hydro with IP-GLASMA initial conditions,  $\tau_0 = 0.14$  fm/c,  $< \tau_{init}^{0-20\%} > = 385$  MeV,
  - Linnyk et al.: off-shell transport, microscopic description of evelution,
  - v. Hees et al.: ideal hydro with initial flow,  $\tau_0 = 0.2 \text{ fm/}c$ ,  $T_{\text{init}}^{0-20\%} = 682 \text{ MeV}$ ,
  - Chatterjee et al.: 2+1 hydro, fluctuating initial conditions,  $\tau_0 = 0.14$  fm/c,  $T_{init}^{0-20\%} = 740$  MeV.

#### ALICE detector – Run II



EMCal:

- 12 SM (10 + 2 × 1/3)
- |η| < 0.7
- $80^{\circ} < \phi < 187^{\circ}$  ( $\Delta \phi = 107^{\circ}$ )

PHOS:

- 3.5 SM
- |η| < 0.12</li>

DCal:

- 6 × 2/3 SM + 2 × 1/3 SM
- 0.22< | η|<0.7</li>
- 260° < φ < 327° (Δφ = 67°)</li>

PHOS

Super Module:

- Δφ = 20°
- $\Delta\eta$  = 0.7 (EMCal)
  - $\Delta \eta$  = 0.12 (PHOS)

- Run II 2015 2018
- pp @ 5 TeV, 13 TeV, HI @ 5 TeV
- Calorimeters acceptance gain ~1.6 of Run I

24

DCal

#### **Colorimeters** performance



#### Summary

- ALICE can measure neutral mesons in wide  $p_{T}$  range
- Measurements allowed us to test perturbative QCD inspired models and parametrization of parton distribution and fragmentation functions
- Very strong  $\pi^0$  suppression in Pb-Pb:  $R_{AA}^{\pi 0} \simeq 0.1$
- First measurement of η meson in Pb-Pb collisions was shown
- Medium effects were observed in π<sup>0</sup>-hadron correlations
- Excess in the double ratio  $R_{\gamma} > 1$  for central Pb-Pb collisions was found to be not compatible with pQCD below 4 GeV/c
- Various models with QGP formation show different levels of agreement
- Effective temperature from direct photon spectrum is ~ 300 MeV
- Analysis of Run II data ongoing → new and interesting results are expected

#### Backup

#### ALICE detector - 2012



• pp @ 8 TeV, p-Pb @ 5.02

EMCAL:

- 12 SM\* (10 + 2 × 1/3)
- $|\eta| < 0.7$
- $80^{\circ} < \phi < 187^{\circ}$  ( $\Delta \phi = 107^{\circ}$ ) PHOS:
- 3 SM
- $|\eta| < 0.12$
- $260^{\circ} < \phi < 320^{\circ} (\Delta \phi = 60^{\circ})$

\*10 SM are in readout

### $R_{AA}$ for p-Pb and Pb-Pb

PRL 110, 082302 (2013)





#### Doppler-shifted effective temperature:

$$T_{\rm eff} = T \cdot \sqrt{\frac{1+\beta}{1-\beta}}$$



#### Centrality estimation in Pb-Pb

Phys. Rev. C 88, 044909 (2013)

- Centrality observables
  - Charge particle multiplicity in VZERO
  - Forward energy in ZDC
  - SPD for systematics
- Number of particle sources

 $f \times N_{part}$  + (1 - f) ×  $N_{coll}$ 

- Number of particles produced by each source given by Negative Binomial Distribution (μ, κ)
- Glauber model fits to cross-section
  - 100% trigger efficiency
  - Background is negligible
  - $\rightarrow$  ~ 90% of total cross-section

with  $\sigma_{\text{INFI}}^{\text{NN}}$  = 64 ± 5 mb

<1% agreement (0-70%) N<sub>part</sub> with Glauber fit 3.5 % for peripheral (>70%)

• Define centrality classes corresponding to fractions of the inelastic Pb-Pb cross-section



#### **Decay photon sources**



#### Direct photon $R_{AA}$ in Pb-Pb for centrality 20-40 %



#### Functions

• Tsallis

$$f(p_T) = \frac{1}{2\pi} \frac{dN}{dy} \frac{(n-1)(n-2)}{nT(nT+m(n-2))} \left(1 + \frac{\sqrt{p_T^2 + m^2} - m}{nT}\right)^{-n}$$
$$E \frac{d^3 \sigma^{pp \to \pi^0 X}}{dp^3} = \frac{\sigma_{pp}^{INEL}}{2\pi} A \frac{(n-1)(n-2)}{nC[nC+m(n-2)]} \left(1 + \frac{m_T - m}{nC}\right)^{-n}$$

• Hagedorn

$$E\frac{d^3\sigma^{pp\to\pi^0 X}}{dp^3} = (\frac{p_0}{p_0-p_T})^n$$

• Power law

$$E\frac{d^3\sigma^{pp\to\pi^0 X}}{dp^3} = c(\frac{1}{p_T})^n$$