

XXII Cracow Epiphany Conference Run: 27673 on the Physics in LHC Run 2 January 7-9, 2016

ATLAS Detector Status and Upgrade

Martin Wessels on behalf of the ATLAS Collaboration

Kirchhoff Institute for Physics, University of Heidelberg

Outline

ATLAS cavern February 2004

- ATLAS detector and LHC timeline
- Run 2 upgrades [and performance]
- Future upgrades for run 3 and run 4

February 2007

Martin Wessels

The ATLAS Detector

Martin Wessels

Martin Wessels

Martin Wessels

Start of Run 2: Exciting Times

New era for proton-proton as well as heavy ion collisions

pp collisions at $\sqrt{s}=13$ TeV

- in 50ns and 25ns bunch spacing
- peak luminosity 5.1×10³³ cm⁻² s⁻¹

pp collisions at $\sqrt{s}=5$ TeV

Pb-Pb collisions at $\sqrt{s_{NN}}=5$ TeV

Martin Wessels

New Frontiers in Physics

Run: 279685 Event: 690925592 2015-09-18 02:47:06 CEST

This event was collected in September 2015: the two central high-p_T jets have an invariant mass of 8.8 TeV, the highest-p_T jet has a p_T of 810 GeV, and the subleading jet has a p_T of 750 GeV. The missing E_T for this event is 60 GeV.

8

Pb-Pb at $\sqrt{s_{NN}}=5$ TeV

Run: 286665 Event: 419161 2015-11-25 11:12:50 CEST

first stable beams heavy-ion collisions

ATLAS Detector in 2015

ATLAS pp 25ns run: August-November 2015

Inner Tracker		Calorimeters		Muon Spectrometer			Magnets			
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
93.5	99.4	98.3	99.4	100	100	100	100	100	100	97.8
All Good for physics: 87.1% (3.2 fb ⁻¹)										

Luminosity weighted relative detector uptime and good data quality (DQ) efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at $\sqrt{s}=13$ TeV between August-November 2015, corresponding to an integrated luminosity of 3.7 fb⁻¹. The lower DQ efficiency in the Pixel detector is due to the IBL being turned off for two runs, corresponding to 0.2 fb⁻¹. Analyses that don't rely on the IBL can use those runs and thus use 3.4 fb⁻¹ with a corresponding DQ efficiency of 93.1%.

- Overall smooth operation [Average recording efficiency 92.1%]
- Constant live fraction of channels
- Important re-commissioning with data
- Learned to operate "a new detector"

LS1/Run 2 Upgrades

Additional 4th silicon pixel layer [IBL] Innermost layer at R=3.3cm

Infrastructure

New beam pipe, improvements to magnet and cryogenic system

Detector consolidation

More muon chambers, improved readout for 100 kHz L1 rate, LAr and Tile power supply replacements, new lumi detectors, new MBTS

Trigger/DAQ improvements

New L1 topological trigger [L1Topo], new L1 Central Trigger Processor, improved L1Calo, Tile-muon coincidence, Fast TracK Trigger [FTK], restructured High Level Trigger

Martin Wessels

Inner Detectors

Three ATLAS tracking detectors: Pixels, SCT and TRT

- New innermost 4th layer for the Pixel detector [IBL = Insertable B-Layer]
- Required complete removal of the ATLAS Pixel volume
- IBL fully operational

[See talk by Ewa Stanecka]

Inner Detector Performance

Pixel Tracker

- Overall smooth operation
- More functional modules compared to run 1
- IBL enhances tracking close to IP

SemiConductor Tracker — SCT

- Stable and reliable throughout 2015
- 98.6% of 6 million strips active for tracking
- Small drop in hit efficiency with 25ns beams [Expected due to veto on hit in previous BC]

Fransition Radiation Tracker — TRT

- Proved to sustain 100 kHz at 50% occupancy
- Still some gas leaks Negligible impact on electron identification

IBL Performance

Bowing of ~10 μ m/K observed during cosmic ray commissioning in early 2015

- During normal operations temperature stable to 0.2K
- Becomes an issue due to LV front-end current drifts observed during data taking
- Current drifts are understood due to radiation and expected to improve

Alignment correction applied on run-by-run basis, no significant impact left on tracking

Martin Wessels

Calorimeters

- Very stable performance
- Improved stability of new Tile power supplies
- Good operation efficiency: 99.4% [LAr] and 100% [Tile]
- LAr using 4 instead of 5 sample readout to achieve 100 kHz
- Physics performance, see Hong's talk later

Muon Systems

Two triggering systems

- Restive Plate Chambers [RPC]: |η|<1.05
- Thin Gap Chambers [TGC]: 1.0 < |η| < 2.4

Precise muon chambers

- Monitor drift tubes [MDT]: barrel and end-cap
- For |η| > 2.0 also Cathode Strip Chambers [CSC]

Improved acceptance from additional chambers in feet and elevator regions

Physics performance, see Hong's talk

Trigger/DAQ System

- Centre-of-mass energy 8→13 TeV 2-2.5x increase in trigger rates
- Peak luminosity $0.8 \rightarrow 1.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} 2 \text{x}$ higher trigger rates

Possible options:

Increase output rate

 Challenge for offline computing

Increase thresholds

 Lose interesting physics

Increase rejection

 Better hardware and software

Martin Wessels

Trigger/DAQ System

- Centre-of-mass 8→13 TeV 2-2.5x increase in trigger rates
- Peak luminosity 0.8→1.7e34 ~2x higher trigger rates

Possible options:

Increase output rate

 Challenge for offline computing

Increase thresholds

 Lose interesting physics

Increase rejection

 Better hardware and software

Martin Wessels

Level-1 Calorimeter Trigger

Signal Generator On-board test pulses 2 Dual Channel FADC 80 MHz, 10 bit SPARTAN-6 FPGA Implements functionality of PHOS4, ASIC, LVDS

 Various upgrades applied to L1Calo

 E.g. upgrade of ~2000 Multi Chip Modules in the Preprocessor [ASIC ↔ FPGA]

L1_XE35 rate / bunch [Hz]

- Pile-up induced pedestal fluctuations led to increased MET rates during run 1
- Dynamic pedestal correction in nMCM resulting in dramatic rate improvement

Martin Wessels

Trigger Level Analysis

- Di-jet resonance search limited to m_{jj}>1.1TeV
- Lowest unprescaled single jet is 360 GeV
- Store only HLT jets instead of full ATLAS event
- → 2 kHz vs 200-300 Hz
- Enhanced sensitivity to lower BSM mediator masses

Aka. Phase-I LS2/Run 3 Upgrades

- Goal is to provide better trigger capabilities to maintain the same performance at higher pileup [μ ~80]
- The four main Phase-I Technical Design Reports are approved
- New Small Wheel for muon trigger [NSW]
- Hardware based track trigger [FTK] for HLT
- Finer granularity for L1Calo [LAr, TDAQ]

New LAr Trigger Signals

Electron with $E_T=70$ GeV as seen by run 1/2 vs. run 3 system

Trigger towers $\rightarrow \Delta \eta \Delta \Phi = 0.1 \times 0.1$ Jet background most critical for electron identification Layer information maintained Higher eta granularity Finer energy quantisation

TDAQ: Aim for 1 MHz accept rate and tracking at L1 to maintain low thresholds

• Two levels of custom-hardware triggers, L0 and L1, including new L1Track

Tracking: Need to cope with the increased pile-up and radiation

• ITK — A complete new all silicon tracker, up to $|\eta| < 4.0$

Forward Calorimetry: Higher transverse granularity to cope with large energy fluctuations at very high pile-up (space charge effects, HV drops, over-heating)

- sFCAL Design similar to that FCAL but narrower LAr gaps
- miniFCAL In front of the FCAL

Overview of ITK Upgrade

- Need robust tracking and minimal material
- Various designs are considered, including extension to large |η|
 - Strip tracker:
 5 layers, stubs,
 7 disks on each side
 - Pixel tracker:
 4 layers, 12 disks

Martin Wessels

CERN-LHCC-2012-022

Track parameter	Existing ID with IBL	Phase-II tracker	
$ \eta < 0.5$	no pile-up	200 events pile-up	
	$\sigma_x(\infty)$	$\sigma_x(\infty)$	
Inverse transverse momentum (q/p_T) [/TeV]	0.3	0.2	
Transverse impact parameter (d_0) [µm]	8	8	
Longitudinal impact parameter (z_0) [μ m]	65	50	

ATLAS I

Conclusions

- Start of LHC run 2 Exciting times!
 - Overall smooth commissioning and running
 - Learned to operate a new detector
- Phase I upgrade focussing on trigger
 - Maintain low thresholds at up to 2x design luminosity
- Phase II upgrade essential to operate the detector at up to 7x design luminosity

Additional Material

Martin Wessels

pp at 13 TeV

Average recording efficiency 92.1%

	Run 1 [8 TeV]	Run 2 [13 TeV]	
Peak lumi [cm ⁻² s ⁻¹]	7.7x10 ³³	5.1x10 ³³	
Integrated Lumi [fb-1]	22.8	4.2	
Mean Interactions/BX	21	14	
Data Taking Eff.	93 %	92%	

Martin Wessels

Calorimeter Performance

EGAM-2015-006

P_T balance in multi-jet events [part of the in-situ JES calibration]

Electron reconstruction efficiency in $Z \rightarrow ee$ events [calorimeter only]

Martin Wessels

Muon System Performance

MUON-2015-004

• Muon reconstruction efficiencies for $Z \rightarrow \mu\mu$ and $J/\Psi \rightarrow \mu\mu$

- Three working points
- Good agreement between data and Monte Carlo

Martin Wessels

Trigger Rates

- 1 kHz physics output rate
- 4 kHz total output rate [partial EB for calibration, monitoring and data scouting]
- Bandwidth ~1.5 GB/s [80% physics]