Fluorine-19 Magnetic Resonance Imaging of the Lungs using Octafluorocyclobutane

Mitchell Albert

Thunder Bay, Canada

Inert fluorinated gases are promising novel inhalation agents for pulmonary functional magnetic resonance imaging (MRI)¹. Numerous studies demonstrated the feasibility of fluorine-19 (¹⁹F) MRI of the lungs using perfluoropropane (PFP)^{2,3} and sulfur hexafluoride (SF₆)⁴ for diagnostics and the various lung disorders investigation. High image signal-tonoise ratio (SNR) achievement is possible by a high number of signal averages allowed by short T₁ relaxation times. Furthermore, ¹⁹F has a high natural abundance (~100%), a large gyromagnetic ratio, and is absent naturally in the living organism. These benefits result in the maximization of the ¹⁹F MRI signal.

Despite wide utilization of PFP and SF₆ gases in research studies, it is feasible to explore other inert fluorinated gases that can enhance the SNR level of ¹⁹F pulmonary MRI. In this study, we explored the performance of octafluorocyclobutane (OFCB) as an inhalation agent for ¹⁹F pulmonary MRI in healthy rats⁵. OFCB contains eight chemically equivalent fluorine atoms per one molecule (which is a greater number of equivalent ¹⁹F atoms compared to other fluorinated gases) and has a longer spin-spin relaxation time. To evaluate the feasibility of OFCB as a fluorinated gas for ¹⁹F lung MRI, we conducted a comparative analysis between OFCB and the previously investigated PFP, with the aim of assessing the SNR of OFCB scans in relation to PFP scans.

In vivo relaxation times of OFCB-O₂ mixture were measured as 17.77 ± 1.5 ms and 3.4 ± 0.4 ms for T₁ and T₂* respectively. Lung images acquired in axial orientation using 70° Ernst flip angle (FA) condition (TR = T₁) and gradient echo (GRE) pulse sequences. The average was performed over either 11s (single breath-hold) or 185 s (continuous breathing) resulting in SNR of 9.72 ± 2.1 and 14.48 ± 4.51 respectively. The same images acquired using PFP gas demonstrated smaller SNR of 9.72 ± 2.0 for the same single breath-hold protocol and of 12.68 ± 4.09 for continuous breathing. OFCB images acquired using continuous breathing protocol and full longitudinal magnetization recovery condition (FA = 90° , TR = $5T_1$) showed the SNR equal to 10.23 ± 0.7 , whereas PFP images acquired using the protocol demonstrated lower SNR of 8.81 ± 0.46 .

OFCB significantly outperformed PFP in all three different imaging protocols (p < 0.05). The observed normalized SNR (normalized for the number of signal averages) advantage of OFCB agreed well with theoretical predictions for single breath-hold protocol and for continuous breathing with 90° excitation FA. The SNR of OFCB was up to 21% higher compared to the PFP scans. A slight deviation from theoretical values was observed in the continuous breathing protocol with 70° Ernst angle, potentially due to a minor mismatch between the OFCB T₁ *in vivo* and the TR value used during the scan. In addition, the absence of respiratory gating could explain this discrepancy. In general, OFCB shows a considerable performance advantage over PFP, resulting in notably superior image quality in OFCB scans.

- 1. Couch, M. J. *et al.* 19F MRI of the Lungs Using Inert Fluorinated Gases: Challenges and New Developments. *J. Magn. Reson. Imaging* **49**, 343–354 (2018).
- 2. Neal, M. A., Pippard, B. J., Simpson, A. J. & Thelwall, P. E. Dynamic susceptibility contrast 19F-MRI of inhaled perfluoropropane: a novel approach to combined pulmonary ventilation and perfusion imaging. *Magn. Reson. Med.* **83**, 452–461 (2020).
- 3. Obert, A. J. *et al.* 1H-guided reconstruction of 19F gas MRI in COPD patients. *Magn. Reson. Med.* **84**, 1336–1346 (2020).
- 4. Adolphi, N. L. & Kuethe, D. O. Quantitative mapping of ventilation-perfusion ratios in lungs by 19F MR imaging of T1 of inert fluorinated gases. *Magn. Reson. Med.* **59**, 739–

746 (2008).

5. Shepelytskyi, Y. *et al.* Evaluation of fluorine-19 magnetic resonance imaging of the lungs using octafluorocyclobutane in a rat model. *Magn. Reson. Med.* **85**, 987–994 (2021).