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Introduction or motivation

Different classifications of
system with respect to cooling

Review of the different cooling
methods

Implementation of superfluid
helium forced flow in any CFD
software.
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Introduction or motivation

1. Cooling Superconducting Magnets

Superfluid helium is used to cool superconducting magnets, such as those found in MRI (Magnetic Resonance
Imaging) machines, particle accelerators, and fusion reactors. These magnets operate at very low temperatures
(around 4 K or lower) to remain in a superconducting state. The forced flow of superfluid helium ensures efficient
heat removal from the system, helping to maintain stable superconductivity over extended periods.

2. Particle Accelerators

In large particle accelerators like CERN's Large Hadron Collider (LHC), superfluid helium is forced through cooling
channels to cool superconducting magnets and other critical components. The low-temperature cooling is essential
to keep the system at the desired operational temperature, typically in the range of 1.8 K to 2 K, ensuring high
performance and energy efficiency in the accelerator.

3. Space Applications

Forced flow of superfluid helium is used in space exploration for cooling sensitive instruments, such as infrared
detectors and communication equipment on spacecraft and satellites. In space, superfluid helium is often used to
cool equipment down to extremely low temperatures to improve the sensitivity and accuracy of measurements,
especially in deep-space observation and astronomy missions.

4. Quantum Computing

Superfluid helium is used in the cryogenic systems of quantum computers to cool quantum bits (qubits) to extremely
low temperatures. The forced flow helps maintain stable, ultra-low-temperature environments that are necessary for
quantum coherence and reliable qubit operation.




Introduction or motivation

5. Ultra-Sensitive Detectors

In experimental physics, such as in the search for dark matter or in neutrino detection, ultra-sensitive detectors operate at
cryogenic temperatures. Superfluid helium, forced through these systems, helps maintain the low temperatures required to
reduce thermal noise and enhance the precision of these detectors.

6. Superfluid Gyroscopes

Superfluid helium is also used in devices like superfluid gyroscopes, which are extremely sensitive rotation sensors. These
gyroscopes can be used in space navigation or precision measurement systems. The forced flow of superfluid helium helps
maintain the superfluid state, ensuring the device functions with minimal resistance and maximal sensitivity.

7. Nuclear Fusion Research

In fusion reactor experiments, like those involving Tokamak reactors, the forced flow of superfluid helium is used to cool
superconducting coils that create the magnetic fields required to contain high-energy plasma. The extreme low-temperature
environment provided by superfluid helium ensures that the coils remain superconducting, allowing stable operation of the
reactor.

8. Astrophysics and Space Telescopes

Superfluid helium is employed to cool sensors in space telescopes that observe distant cosmic phenomena, particularly in the
infrared spectrum. Forced flow cooling ensures that the detectors maintain low temperatures for long periods, which is
necessary for capturing faint astronomical signals.
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Governing Equations

Proposed model is derived from the two-fluid model based on Khalatnikov's theory

Density of superfluid helium P = pPn+ Ps (1)
Density flux P U= PplUy + PsUs (2)
Continuity equation g—’; + V- (ppu, + psus) =0 (3) T et

n — normal component

Momentum equation for the total fluid s — superfluid component

0
it (pnun + psus) =V (pnunun + psusus) —Vp+ U[Vzun + %V(V i un)] +pg (4)

Momentum equation for the superfluid component

dug

1 n
E = _(us : V)us + sVT _;Vp +§_p|7|un - uslz +Apn|un - uslz(un - us) +g (5)

Entropy equation
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Governing Equatﬁions
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Assumption : The thermo-mechanical effect, the Gorter-Mellink mutual friction are the dominant
terms in the momentum equation
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Governing Equations

Assumption : The thermo-mechanical effect, the Gorter-Mellink mutual friction and pressure
gradient are the dominant terms in the momentum equation

1
sVT = 5 VP — A py |, — )% (i, — i)

Velocity fields v, et v, in function of v

SS 3
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This assumption transforms the two-fluid model into a one-fluid model!




Governing Equations

The one-fluid model is described by

Continuity equation g—i +V-(pu)=0 (1)

Momentum equation
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Governing Equations
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Experiment -validation
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Fig. 1. Schematic of the experiment. Fig. 2. Experimental loop for He 1T forced flow.




Experiment
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Fig. 6. Heat transfer in the test section for a flow velocity of 0.52 m/s
and for several heat per cross-section area (Thay = 1.7 K). The markers
correspond to experimental results and the lines represent the nu-
merical solution of the He II heat equation (3).
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Fig. 7. Heat transfer in the test section for a flow velocity of 4.14 m/s
and for several heat per cross section area (7,,,;, = 1.7 K). The markers
correspond to experimental results and the lines represent the nu-
merical solution of the He II heat equation (3).
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Numerical model

« Equations implemented in OpenFOAM software;

* Anon - linear system with mixed hyperbolic — parabolic equation system is solved with high resolution
scheme which is a bounded second-order upwind biased discretization

 ASST (Shear — Stress - Transport) turbulence model was applied for solving the pressure and velocity
fields

«  The maximum timescale is 106 s with a root-mean-square (RMS) residual target smaller than 107

* Adiabatic condition applied to the pipe walls except at the heating section

+ The boundary conditions for perpendicular L and tangential || total velocities at the walls

3
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Numerical model

RRa——_
e
=
\[ _.il”"’”’ll
1 [

\

a) The computation domain with boundary conditions
and b) snapshot of mesh at inlet region near the wall
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« A symmetric conditions are applied at the two
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Steady - state heat transfer

Comparison with the NHMFL forced flow experiments
* 1.212 m long straight stainless steel tube of 9.8 mm ID
» Eight temperature sensors and a cold differential pressure
transducer along the pipe

Calculation
« Uniform mesh of 2000 nodes along the z-direction
* Heater modeled via volumetric heat source
« Boundary temperatures taken from Fuzier’s experiment
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Steady - state heat transfer
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Conclusions

* The new simplified model of forced flow superfluid helium has been proposed. The model assumes
that the dominant terms in the superfluid momentum equation are the thermo-mechanical term,
the Gorter-Mellink mutual friction and the pressure gradient;

* To demonstrate the stability and capability of three dimensional (3D) model, the model was
validated with experimental data obtained during steady heat transfer processes;

* The model reproduces with a good accuracy experimental data, particularly in 'transition’ regions
where other models are 'failing badly'.

Perspective

* To extend the validation procedure for transient processes;
* Optimizing the calculation processes;
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