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® Loss mechanisms in technical superconductors
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Loss mechanisms in technical superconductors (1/3)

1) Eddy current losses

® Caused by currents induced
in normal metals: important
contribution in the high
frequency range

2)Hysteresis losses in
superconducting filaments

® Caused by the non - linear,
hysteretic behavior of the SC
material
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Loss mechanisms in technical superconductors (2/3)

2) Hysteresis losses in superconducting filaments/layers SC filament

® In LTS wires, magnetization currents flow in filaments of

3-50 um size.
In 2nd generation REBCO tapes currents flow over the
whole tape width (2 - 12 mm).
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Loss mechanisms in technical superconductors (3/3)

3) Coupling losses

® Currents flowing between SC

filaments (through normal
metal matrix in a wire) or
different SC  wires/tapes
(through contact resistances
in a cable)

4) Ferromagnetic losses

® Due to the presence of
ferromagnetic materials (ex.
Nickel and Monel in MgB,)
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® Models for AC loss computation in LTS magnets
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AC loss computation in LTS magnets: THELMA code

® The AC loss computation is a complex ® The THELMA code iS an
task due to the inherent multiscale electromagnetic model based on the
structure of the problem A-V formulation [*], which computes
the current distribution and losses in
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[*] M. Breschi, P. L. Ribani, IEEE Trans. Appl. conductor (c|cc)
Supercond., vol. 18, n. 1, pp. 18 — 28, 2008.
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THELMA code application

® The THELMA code is a powerful tool, which thanks to its flexibility can be applied to
analyze numerous SC devices
LTS wires (NbTi, Nb;Sn, MgB,) Rutherford cables CICC Joints

uperconducting
Cable
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THELMA code validation

® The THELMA model was validated against analytical, numerical and
experimental results in @ number of configurations and conditions
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AC loss data obtained in ® Temperature rise during AC ® Ac |osses of the ITER

the SULTAN facility (SPC, loss test on the ITER Central  cantral Solenoid
Switzerland) [*] Solenoid Insert [**] Module [***]

[*] M. Breschi, et al. IEEE Trans. Appl.  [**] M. Brschi, et al., IEEE Trans. Appl. [***] M. Breschi, et al., IEEE Trans. Appl.
Supercond., vol. 28, n. 3, 5900205, 2018 Supercond., vol. 27, n. 4, 7762085, 2017  Supercond., vol. 33, n. 2, 5900212, 2022.
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Case study: the ITER Central Solenoid

For a comparison of losses between
LTS and HTS conductors in a coil, we
selected the ITER Central Solenoid
(CS) as a case study

The CS consists of 6 modules, each
made of 40 pancakes wound with a
Nb,Sn cable in conduit conductor

The comparison of AC losses was
performed considering the specific
data of the CSM#1
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Analytical calculation of losses for LTS magnets (1/3)

® The basic analytical model for coupling losses is based on single time constant :

® Measurements GA — Model (nt from CSI)
— Model (nt from Sultan)
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o | 02 | e -~
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was found [*] [*] M. Breschi et al., IEEE Trans. Appl. Supercond., vol. 33, no. 2, 2023.
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Analytical calculation of losses for LTS magnets (2/3)

® The discrepancy found for the extrapolation from SULTAN data was resolved
accounting for the impact of the B-field and the Lorentz-force on the nt [*, **]:

nT[S] =nty,—pf - B[T] +y - I[kA] . B[T] ® Measurements GA — Model (nt from CSI)
N e’ \__.v..._/ 14 — Model (nt from Sultan) ---Model (nt (B, 1))
from SULTAN from Twente ., | Lossesinthe CSM1 during 7
samples press 2 10 L exponential dumps of ,/'"
. g 0g | transport current A .
The value of the nt is obtainedasa ¢S Py d
. . . —l 06 B (," 7
combination of the time constants of © & 7
. o sk %k ¥ < 04 B ‘,“‘ ///
the multi-time constant model [***] -~ -
0.2 + -
___—-." — -
OO E=—— | | | | | |
5 10 15 20 25 30 35 40
[*] P. Bauer et al., IEEE Trans. Appl. Supercond., vol. 32, no. 6, 2022. Current (kKA)
[**] A. Torre et al., |EEE Trans. Appl. Supercond., vol. 32, no. 6, 2022. _
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Analytical calculation of losses for LTS magnets (3/3)

® The hysteresis losses are computed with two different formulae depending on the
value of the cumulative field variation AB with respect to the penetration field B),:
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[*] M. Breschi et al., IEEE Trans. Appl. Supercond., vol. 33, no. 2, 2023, 5900212. _
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® Model for AC loss computation in HTS magnets
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AC loss computation in HTS magnets: analytical approach

¢ Starting from [*] a set of analytical formulae to compute hysteresis losses in a
superconducting slab was developed [**], accounting for transport current and
magnetic field
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_sed ), g 1)Be < —Bem ( BeptBin—2B; y —— Bew — B;

P = 16uon< 2 Tor Sgn( ) e > em( Bor.—Bim. ) . o . . .

| A3 for sgn(IBe > —Bem ( 2 e%jfi%:ij) z - '

2D

A1 = (B.+B;) (Bem -+ Bim -+ sgn(l)(B. + B:))" — (B. — Bi) (sgn(l) (Bin — Bem) — B +B;) Superconducting slab
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[*] K. Kajikawa et al., Cryogenics, vol. 80, no. 2, pp. 215-220, 2016.
[**] A. Macchiagodena et al, IEEE Trans. Appl. Supercond., vol. 33, n. 5, 2003, 5900705.
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AC loss computation in HTS magnets: model validation

AC Losses [.l/“cyclefm?’]

10'2. '
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The analytical model was validated
by comparison with a 2D FEM
model based on the H-formulation

Computations performed for a
100-tape stack subjected to 50 Hz
sinusoidal transport current and
orthogonal applied field [*]

The impact of transport current
on hysteresis losses in a REBCO
stack is significant

[*] A. Macchiagodena et al, IEEE Trans. Appl. Supercond., vol. 34, n. 3, 2024, 8200305. M. Breschi et al., SPAS 2024 17
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¢ Comparing losses in LTS and HTS magnets: CS module as a case study
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® The LTS cable is the ITER CS conductor,

Comparing losses in the ITER CS module as a case study
ITERCS, 45 kA, 13T,4.5K

consisting of 576 SC strands and 288 Cu
strands wound in 5 stages [*] ITER

The HTS cable is a SECtor-ASsembled LTS cable
(SECAS) conductor based on BRAided
STacks (BRAST), obtained scaling down

the design of the DEMO CS-conductor ENEA HTS EUDEMO, 60 kA, 18T, 4.5 K
(ENEA) [**] SECAS cable [**] SO

stack

The same ratio of transport to critical
current of the DEMO CS conductor was
kept, adapting the cable to the ITER CS
magnet operating conditions

Cu
sector

Helium
channel

:dtm\\\\steel

jacket

[*] M. Breschi., et al. in Superconductor Science and Technology, 2023, 36, 035007
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Comparing losses in LTS and HTS magnets: simulation data

® The designed HTS conductor includes 6 stacks of 21 REBCO tapes, °
4 mm wide, embedded in a braid of copper wires (to be compared ..
with 6 stacks of 25 tapes, 12 mm wide, of the DEMO conductor)
® The outer radius of the HTS ., | T
cable was kept at the value of —Current 1, )
the previous CS ITER conductor 540 I sussazssssszas
® The AC losses were computed ?530 EEsEmEzEEmEEEE
during a cycle of the transport ?:;20 I 3|
current, from 0 kA to /,, with a ©10
ramp-rate of 1 kA/min, followed 0 | | j|essnssnnnsnnns
by an exponential dump 0 1000 2000 3000

3
2
1

112131405 1

time (s)
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Comparing losses in LTS and HTS magnets: models for HTS
(1/2)

® The hysteresis losses in HTS were computed

with two analytical approaches:

[*] (A, for B.<B;
1) The formula for superconducting slabs | | s

[*], accounting for both field and - 165y
transport current

(42 for sen(D)Be < —Bom (225020 )

45 for sga(1)Be > ~Bem (P72 )

2) The formula widely used for LTS, adapted

[**]
to HTS twisted stacked cable in [**], | p =i/1] (B,T,¢) d ab
] hys 377 c\Py iy eff d
which does not account for the transport

deff = Wtape

current

[*] A. Macchiagodena et al, IEEE Trans. Appl. Supercond., vol. 33, n. 5, 2003,
5900705.

[**] M. Takayasu, et al. Supercond. Sci. Technol. vol 25 no. 1, 2011,014011. M. Breschi et al., SPAS 2024 21



Comparing losses in LTS and HTS magnets: models for HTS
(1/2)
®

Coupling losses between tapes in the
stack were neglected due to their low
time constant (2.5 ms) [*]

Current density for a SECAS cable

Surface: Electric potential (mV) Arrow Surface:
T T

mm T 3
A 1.38

10

The coupling losses between stacks were
computed via the single time constant
model, with nt = 300 ms [**]

® The current inside a SECAS HTS cable is
highly affected by the contact resistance
between sectors and between the stacks
and the sectors [**] S

-25 -20 -15 -10 -3 0 3 10 15 20 rmm

rq 0.5

-0.5

[*] Y. Ueno, et al. Plasma and Fusion Research, 2021, 16: [**] G. De Marzi, DEMO intermediate meeting

2405071 02/10/2024 _
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Comparing losses in LTS and HTS magnets: coupling (1/2)

both the LTS and HTS coils.

one.
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The total coupling loss energy follows the same distribution in the pancakes for
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Comparing losses in LTS and HTS magnets: coupling (2/2)

® The upper and lower pancakes exhibit higher losses than the | gesgagsssss
central ones, due to their higher average value of the field Df§§g
O
Pancake #1 Pancake #20 S
I5¢ I5¢ 0.5
¢ LTS ¢ LTS )
g ¢ HTS E 1 ) ¢ HTS 0
23107 5310 | . -
3 v o Pancake 20 ()
M e, 8 !
an t e, en ’ R
é 5 T ¢ ¢ g 5_ ¢ ¢ ¢ s
% t e, ‘e, L g.. ¢ . .
o ¢ e o .
O e O o -0.5
0 . . . . . . . 0 . . . f : $t o+ o Q_?
1 4 6 8 10 12 14 1 4 6 8 10 12 14 :
Turn # Turn # O
° 1O
Exponential dump from 40 kA (T,=6.2s) Pancake 1 -1 Bl
1.5 2
® The loss distribution over turns is more uniform in the r[m]

pancakes at the coil ends M. Breschi et al., SPAS 2024



Comparing losses in LTS and HTS magnets: hysteresis

( Takayasu ) Hysteresis losses LTS Hysteresis losses HTS [*]
1 | EisieERssti00 ]; 5
Exponential dump |
from 40 kA (T,=6.2 s g 0.25
(Ta ) 0.5 sie 0.5 4
: _ _
The hysteresis losses in — 5 “ |52
: g ® 02 > & BB >
the HTS coil are one order = 0 - o 0 o0
of magnitude higher than - s i
in the LTS one k o0 2
05 s 0.15 0.5 §
OfO) 2
1
-1 0.1 -1

[*] M. Takayasu, et al. Supercond. Sci. 1.5 2 1.5 2
Technol. vol 25 no. 1, 2011,014011. r[m] r[m]



Comparing losses in LTS and HTS magnets: exponential dumps

(1/2)

Td HTS HTS HTS hysteresis
[s] coupling | hysteresis | coupling | hysteresis | Macchiagodena
[kJ] Takayasu [kJ]
[kJ]
10 7.3 65 41 135 531 1079
20 6.95 267 77 566 862 1788
30 6.55 623 97 1350 1108 4554
40 6.2 1140 111 2532 1305 *

® For dumps from low transport current, the hysteresis losses in the HTS conductor
are greater than the coupling ones

® The hysteresis losses in the HTS conductor computed with the 2 analytical formulae
considered differ by a factor up to 4 |
M. Breschi et al., SPAS 2024 26



Comparing losses in LTS and HTS magnets: exponential dumps

(2/2)

Total losses LTS

1.5
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factor from 2.5 to 8 depending on the formula adopted for hysteresis losses
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The overall losses in the HTS conductor are greater than in the LTS one by a
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Summary

® After many years of work on modeling and experiments, the community reached

the ability to predict with reasonable accuracy the losses in large LTS fusion
magnets

* A comparison of losses between LTS and HTS conductors is not straightforward,

due to their different typical working conditions

In the case study of the CS ITER Module in standalone configuration, the coupling
losses of LTS and HTS conductors have the same order of magnitude, while the
hysteresis ones are one order of magnitude higher in the HTS case

Further validation vs numerical and experimental data is required for the
hysteresis loss formulae for twisted stacked HTS conductors

M. Breschi et al., SPAS 2024 28
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