

INNOVATIONS AND OPERATION OF THE SOLARIS SYNCHROTRON

Adriana Wawrzyniak On behalf of Accelerator Departament

Kraków, 21.10.2024

SOLARIS National Synchrotron Research Centre

adriana.wawrzyniak@uj.edu.pl

OUTLINE

- 1. Introduction to SOLARIS
- 2. Main storage ring parameters
- 3. Operation performance
- 4. Current development & future plans
- 5. Summary

INTRODUCTION TO SOLARIS

Solaris is a 3rd generation lights source in user operation mode built in Krakow at JU Campus.

SOLARIS COLLABORATION

SOLARIS Centre with its modern infrastructure, is a strategic partner in implementing EU-funded projects, supporting innovation and technological development in the region.

ACCELERATORS OVERVIEW

STORAGE RING PARAMETERS

Electron energy	1.5 GeV
Design current	500 mA
Number of circulating bunches	32
Natural bunch length σ _z /w. Landau Cavities (LC)	14.2 mm /60 mn
Natural emittance (bare lattice)	5.982 nmrad
Coupling	1 %
Energy spread (bare lattice)	0.000745
Tunes ν _x , ν _y	11.22, 3.15
Natural chromaticities ξ_x , ξ_y	-22.96, -17.14
Corrected chromaticities ξ_x , ξ_y	+1, +1
Momentum compaction	3.055 x 10 ⁻³
Energy loss/turn	114.1 keV
Momentum acceptance	4%

Storage Ring Magnets (mirror symmetric) Machined from solid iron, 2 half slabs, ~4.5 m, ~7 Tons each slab

Gradient bending magnet with pole-face strips

Combined focusing quadrupole-sextupole magnets

Defocusing sextupole magnets

-coil correction magnets (COD, Skew quads, aux. sextupoles)

Optical Functions (ν_x = 11.220, ν_y = 3.150) β [meters] 30 β [meters] η. [cm] 25 2. [cm] 20 15 10 6 1 2 3 5 7 s - position [meters]

7

OPERATION STATISTICS

SOLARIS OPERATION

STANDARD OPERATION

- 2 Shifts from Monday to Saturday (8:00-16:00; 14:00-22:00)
 - Monday machine days, maintenance
 - User operation 5 days/week (Tue-Sat)
 - On call support to 2:00 am from Tuesday-Saturday
 - > 2operators/shift
- Sunday no injection, beam in the storage ring
- Injection twice/day: 8:00 am and 8 pm
- One operation mode (uniform filling pattern)
- Operation in the decay mode

EXTRA OPERATION:

- Injection upon request on Sundays
- Pilot Sundays 10 Sundays (April'24-January'25) with 2 injection and on call support

Current	Energy	ID Beamlines			BM Beamlines			
401.03 mA	1.50 GeV	Name	Gap	State	Name	State		
			23.22 mm			OPEN		
Lifetime	I·⊤ product	PHELIX	22.13 mm	OPEN				
12 69 h	5 08 Ah	URANOS	63.21 mm			OPEN		
12.00 11	0.00 An			under construction		under construction		
4H 8H 12H 16H 24H 48H 72H				Storage Ring S	Storage Ring Status: Beam Delivered			
	● Current — Lifetime Operation Mode: User Operation			ation				
			Next injections	Next injections:				
				8:00 am an mode	8:00 am and 8:00 pm during User Operation mode			
16:00 14. Nov	08:00 16:00 15, Nov 08:00	16:00	16. Nov 0	08:00	OPERATOR MESSAGE			
				2022 11 16	07.40.40			

SPAS 3

OPERATION OVER LAST YEARS

Availability= <u> *Delivered time*</u> *Scheduled time*

B CT DIA MPS ID INF I MML HE OI OT NET MAG PSS RF VAC WAT

Year

Failures by time

Year

NATIONAL SYNCHRO

B CT DIA MPS ID INF I MML HE OI OT NET MAG PSS RF VAC WAT

Failures by number

FAILURE STATISTICS

[J]

CURRENT AND LIFETIME

CLOSED ORBIT STABILITY & REPEATABILITY

-0,86

0.90

-0.92

12

10

XBPM_Y [mm]

Closed orbit correction (slow orbit feedback): 36 beam position monitors (BPMs); 72 corrector magnets (36 for each plane). After beam based calibration the closed orbit is corrected to the sub-micrometer values rms.

AGIELLONIAN UNIVERSITY KRAKÓW

SOLARIS DEVELOPMENT

FAST ORBIT CORRECTION

Fast orbit feedback system development

- ✓ All hardware installations have been finished (24 correctors installed, connected to PS, and Liberas GDX modules).
- $\checkmark\,$ Hardware connections were verified and tested.
- ✓ First proof-of-concept measurements and test runs were performed.
- ✓ The core of the work focuses now on experimentally determining parameter values, control software development and solving problems as they arise.
- ✓ The machine studies time is shared with other new developments, but we expect to have first FOFB-enabled operations next year.

FOFB PERFORMANCE

Reduction of XBPM Standard deviation.

ID's impact compensation – more than 1 order of magnitude correction improvement.

SINGLE BUNCH OPERATION DEVELOPMENT

The Filling pattern measured with fast photodiode at LUMOS beamline.

BUNCH BY BUNCH FEEDBACK SYSTEM

Demonstrated bunch-by-bunch feedback in all three planes;

The beam is currently transversely stable at 400 mA; Mode 21 in the vertical plane oscillates at 0.5 µm steady-st

Mode 21 in the vertical plane oscillates at 0.5 μ m steady-state amplitude, observation to be confirmed;

Strong longitudinal instabilities are seen above 3.6 mA at 1.51 GeV; Bunch cleaning was demonstrated at the injection energy, 35 W is sufficient.

Can be also used as a diagnostic tool (tune measurement, beam excitations –machine studies)

Preparations for BBFB: 50 ps rise/fall time edges comparator design

- Typical waveform generator output is too slow for testing power amplifier for Bunch by bunch feedback; for example, 10 ns is not acceptable
- In Solaris we designed, assembled and tested ultra fast comparator to reach rise and fall edge times of around 50 ps
- Together with typical, slow generator, we got rise/fall time ca. 135 ps, but measured value is a limitation of our oscilloscope analogue bandwidth

INSTALLATION AND START-UP OF BBQ MEASUREMENT SYSTEM

BBQ (Base-Band Q) system will allow us to measure TUNE without exciting the beam based on a direct diode detection method initially designed for the LHC. This allows a reliable tune measurement with micrometre or even sub-micrometre beam oscillations. It is dedicated systems optimised for beam oscillation detection. In these systems the static beam position is rejected at a very early stage with only the oscillation signal retained for further processing.

Front-end and control panel have been installed inside the ring.

Measured signal 10-16 dB above noise, during operation.

The maximum voltage on the detectors is \sim 80V at a current of 450mA.

Further development:

- dedicated acquisition system
- TUNE feedback system

Device in the Storage Ring

Spectrum of the beam

BBQ Frontend

NEW BEAMLINES DEVELOPMENT

Modification of the storage ring - Beamline CIRI

CIRI **Chemical InfraRed Imaging**, is a specialized research installation using infrared light. CIRI will ultimately be equipped with three end stations for imaging in micro- and nanometric spatial resolution.

First stage – design and install new dipole vacuum chamber VK1m Second stage – design and install new beamline inside storage ring (in progress)

Third stage -low vacuum system and endstations at experimental hall

TY

SPAS 3

NEW BEAMLINES DEVELOPMENT -CIRI

IN KRAKÓW

Modification of the storage ring - Beamline CIRI (first stage) – summer 2023

NEW BEAMLINES DEVELOPMENT -CIRI

Preassembly at the experimental hall Spring 2024

Installation in the storage ring Summer 2024 First Light @ end of CIRI 26th August 2024

NEW BEAMLINES DEVELOPMENT -SOLCRYS

EPAS 3

- Order for the source 3PW placed in June 2023
- Expected delivery November 2024
- The conceptual design of the straight section done
- Place holder for new injection kicekr foreseen -
- Placing the order for vacuum components under preapration
- FE tender under preparation

Local correction of flanking dipoles gradient of 3% & 2.5 % increase

Global correction of dipoles gradient 0.25% decrease

LINAC UPGRADE – NEW CONCEPT

See poster presentation on Linac upgrade on Tuesday

Layout of the S-band linac with 14 High Gradient (HG) structures (35MV/m) combined in 7 RF Units

*N. Shafqat, C. Serpico, T.G. Lucas "Design and high-power test of a short prototype of high gradient S-band accelerating structure for the FERMI free electron laser linac upgrade", J.NIMA, <u>Volume 979</u>, 1 November 2020, 164473 https://doi.org/10.1016/j.nima.2020.16447

BUNCH LENGTH MEASUREMENT BY COHERENT DIFFRACTION RADIATION (CDR

Figure 1: CDR spectral-angular distribution for the SOLARIS injector bunch repetition pattern and beam energy of 550 MeV.

Figure 2: Bunch length to power ratio, corrected for diode aperture.

Figure 3: Experimental setup.

Figure 4: Signals measured by diodes with different bands.

- 1. Solaris is a **3rd generation lights source** in **user operation** mode and in **constant development** of the infrastructure.
- 2. The beam availability in 2024 is 97.5% with MTBF of 190.5 h and MTTR of 4.3 h
- **3. Fast Orbit Feedback (FOFB)** system **is now deployed** and **operational** since April with extremely good ID movement compensation.
- 4. Tune measurement and tune feedback project is under development.
- 5. Bunch by Bunch Feedback system purchesed and to be installed by end of this year.
- **6. 4 additional Beamlines: CIRI –** installed-first light at the end in August, **SOLCRYS , SMAUG and NAP-XPS–** design and purchase, **are underway**
- 7. Design work on linac upgrade and top up injection scheme in ongoing.
- 8. Other modes (single bunch, camshaft, dedicated filling patterns) of operation are under development.

Thank you for your attention!

