

Results of the Cold Test of the first HL-LHC Cold Powering System

Superconductivity & Particle AcceleratorS 2024 Krakow, Poland

<u>C. Barth</u>, A. Ballarino, Y. Leclercq, G. Willering, P. Cruikshank, V. Gahier, F. Pasdeloup, W. Bailey*, Y. Yang*

CERN, * University of Southampton

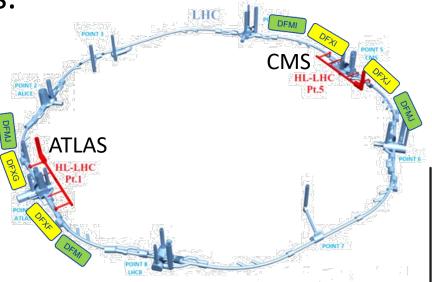
Acknowledgments:

A. C. Zurita, M.-P. Careil, J. Hurte, J. Mazet, S. Morisi, A. Saba, J. B. Deschamps, S. Hopkins, J. Fleiter, the TE-MSC-HSD section & WP6a of HL-LHC

Outline

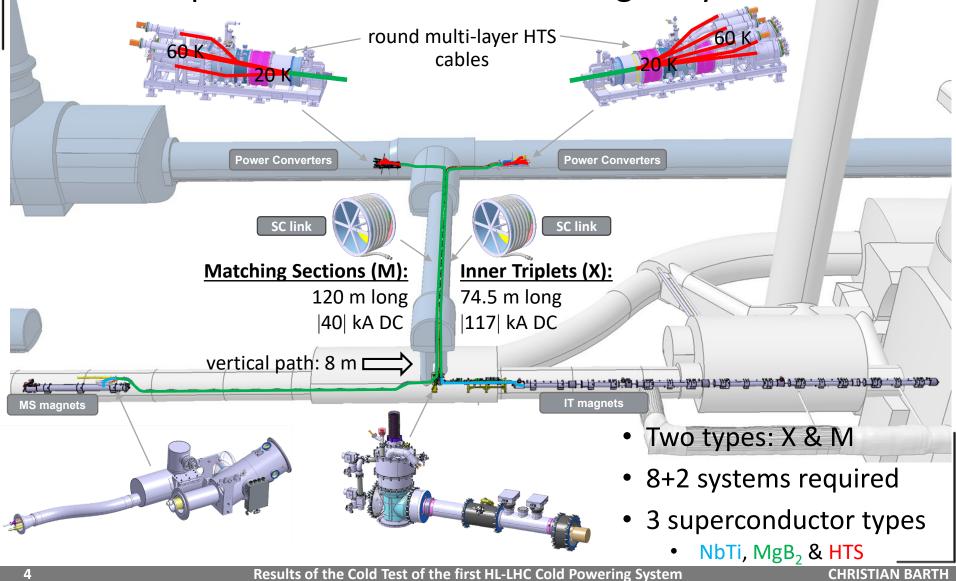
- Motivation
- Cold Powering System
- Cold testing
- Results of the Cold Test
- IT STRING installation

Motivation: The HL-LHC Project

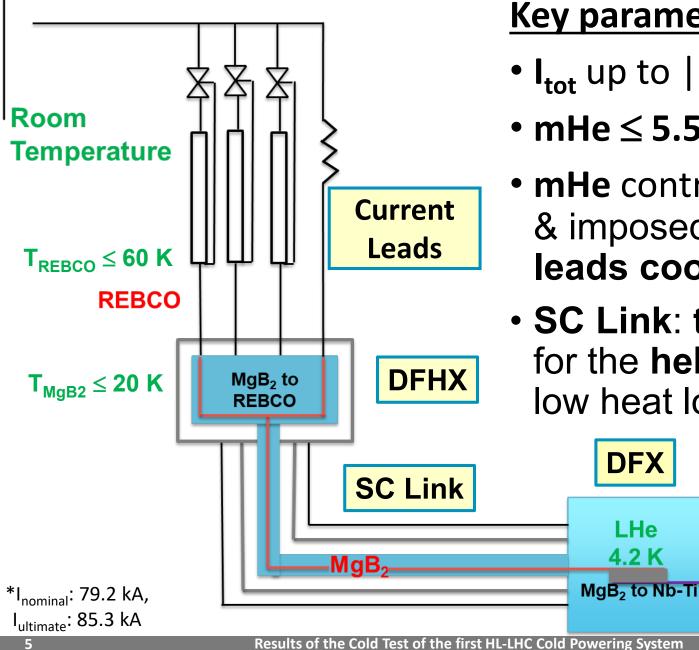

CERN

Key objectives:

- Extend the LHC lifetime by another decade
- Implement hardware configuration to reach:
 - Increase of the peak luminosity by a factor 5 7.5
 - Achieve an integrated luminosity of 250 fb⁻¹ per year and L_{int} = 3000 fb⁻¹ within twelve years
- Exceed the expected luminosity reach of the LHC lifetime by a factor of 10 within 10 years.


At ATLAS and CMS experiments:

- Improved interaction region magnets (e.g. MQXF)
- Cold Powering from service galleries to interaction region



Motivation: HL-LHC Cold Powering

Key Function: Electrical connection between magnets in LHC tunnel and power converters in service gallery

Motivation: HL-LHC Cold Powering

Key parameters (X-type):

- I_{tot} up to |117| kA DC
- mHe \leq 5.5 g/s @ I_{nominal*}
- mHe controlled by T_{REBCO} & imposed by current leads cooling
- SC Link: transfer line for the **helium gas** \rightarrow low heat load cryostat

 λ -Plate

Magnets

1.<u>9 K</u>

Cold Powering System: in SM-18

Instrumentation signals: 304 voltage taps and 105 temperature sensors

Results of the Cold Test of the first HL-LHC Cold Powering System

CHRISTIAN BARTH

Cold Powering System: Superconducting Link

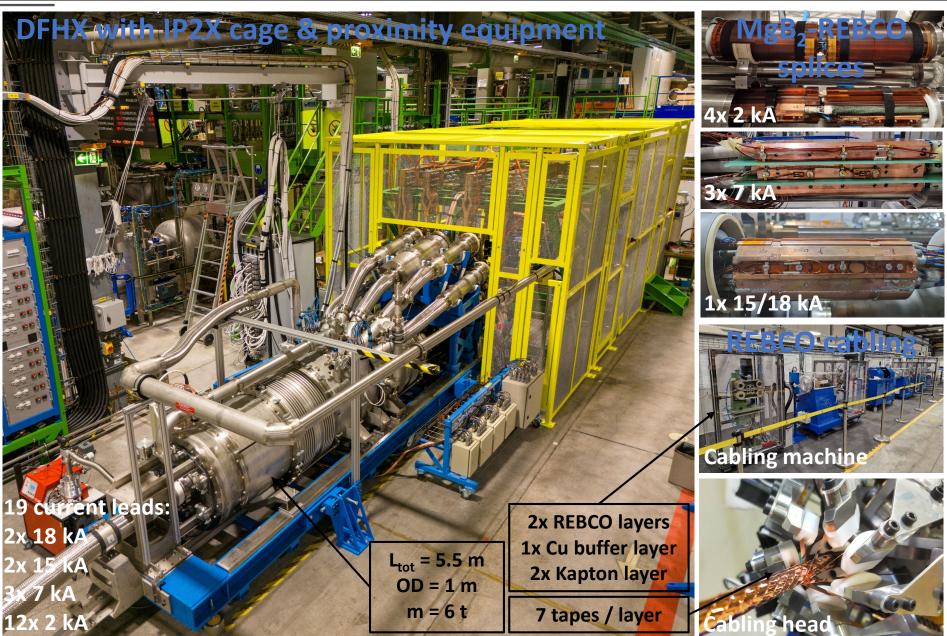
117 | kA @ 25 K

OD ~ 90 mm, ~ 25 kg/m

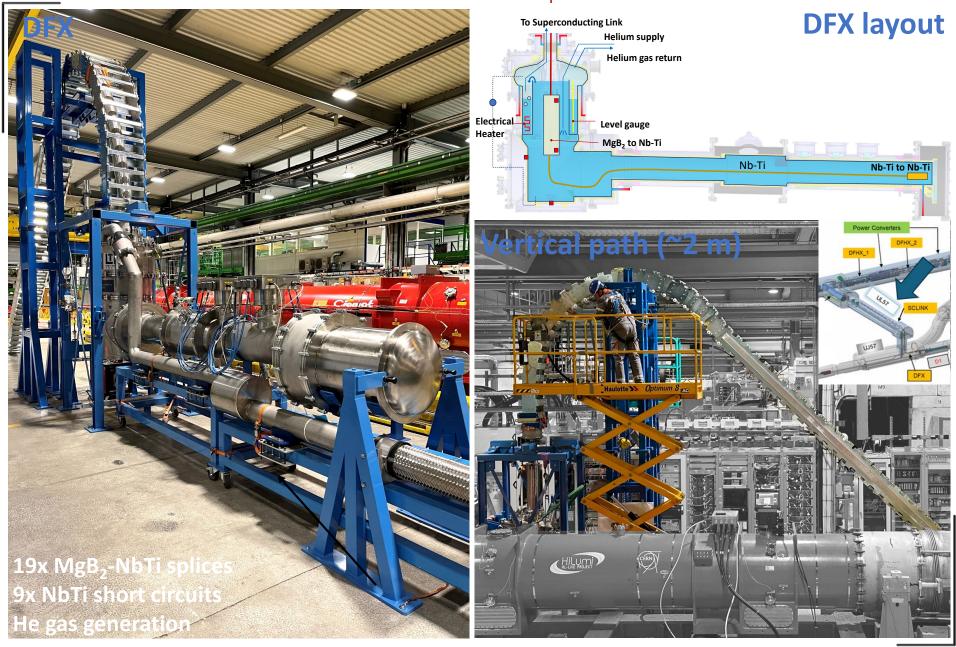
4×18 kA 12×2 kA (coaxial) 3×7 kA 19 Polarities

MgB, cable

flexible 2-wall cryostat: no active thermal shield


Flexible crypstat

Results of the Cold Test of the first HL-LHC Cold Powering System

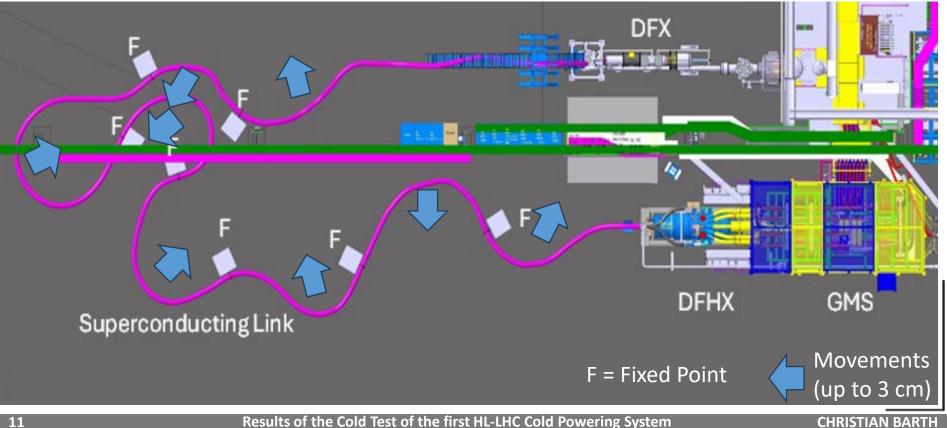

CHRISTIAN BARTH

Cold Powering System: DFHX

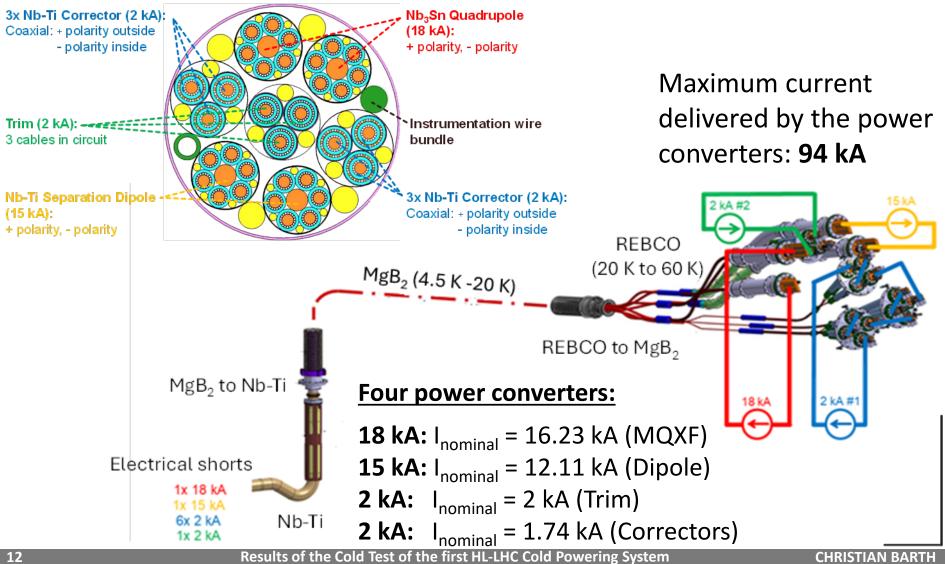
Cold Powering System: DFX & vertical path

Results of the Cold Test of the first HL-LHC Cold Powering System

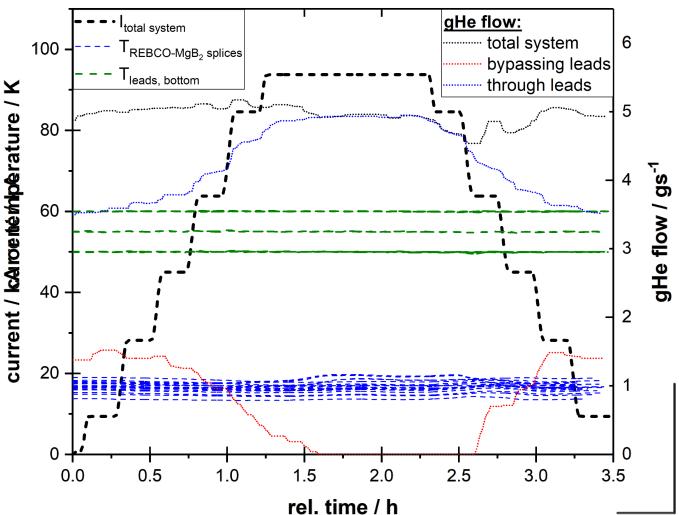
Cold Testing: Cool-down


- After pressure test (4.6 bara)
- And leak test (He leak rate < $1 \cdot 10^{-8}$ mbar·l \cdot s⁻¹)
- Cool-down to nominal cryogenic conditions (< 1 week)

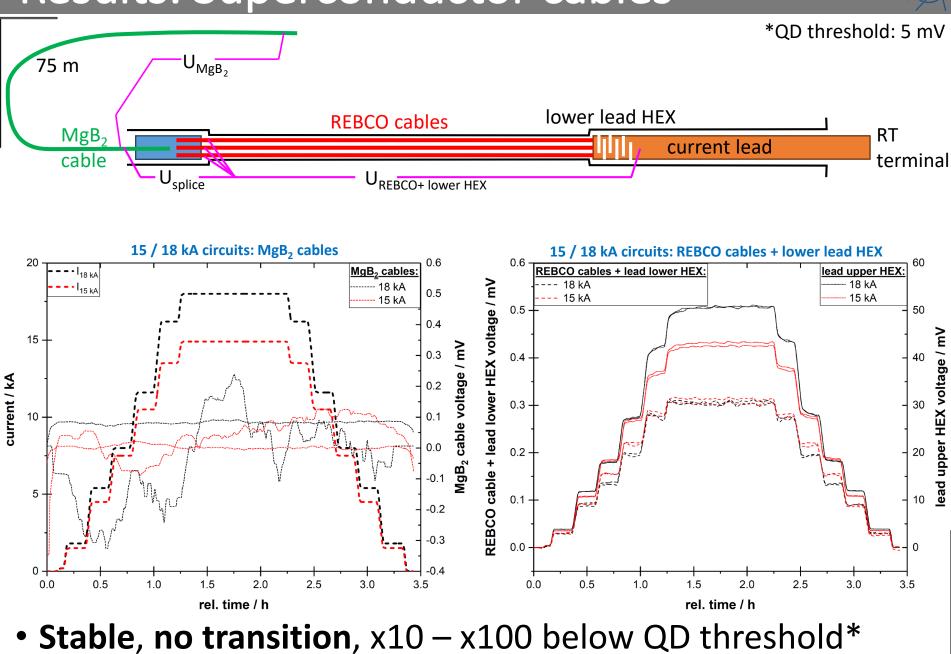
Cold Testing: Thermal Contractions


- Waves with regular fixed points to allow movement
- Two thermal cycles (RT \rightarrow cryogenic conditions) followed by **powering** of all circuits
- Repetitive performance

Cold Testing: Powering Scheme


- + & of each circuit in shorted @ 4.2 K
- Similar circuits connected in series @ RT

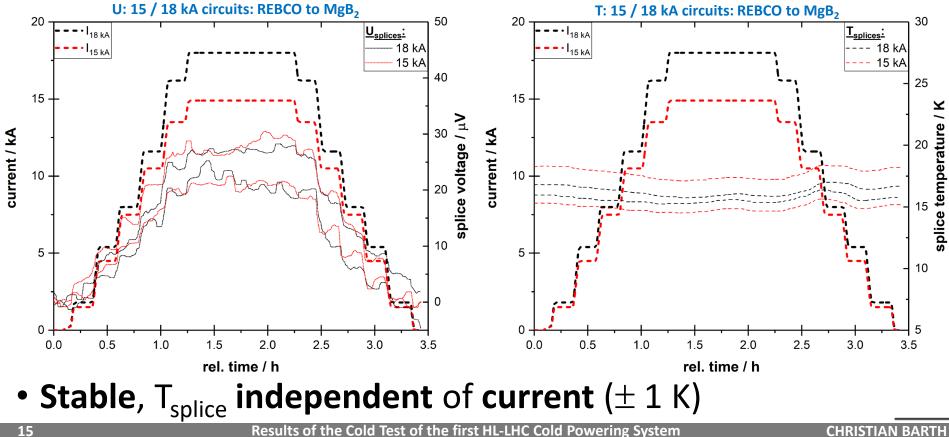
Results: Flow & temperatures


CERN

- 1st full X-type Cold Powering System successfully cold tested:
- Transported 94 kA @ 5.0 g/s gHe flow
- Within specifications: 79.2 kA (I_{nominal} of HL-LHC magnets) @ 5.5 g/s
- Avg. current lead gHe flow: 50 mg·s⁻¹· kA⁻¹
- REBCO cable splice & lead temp. stable
- Splice temp. limit: 25 K
- Lead temp. setpoints:
 - 18 kA: 50 K
 - 15 kA: 55 K
 - 2 kA: 50 60 K

Results of the Cold Test of the first HL-LHC Cold Powering System

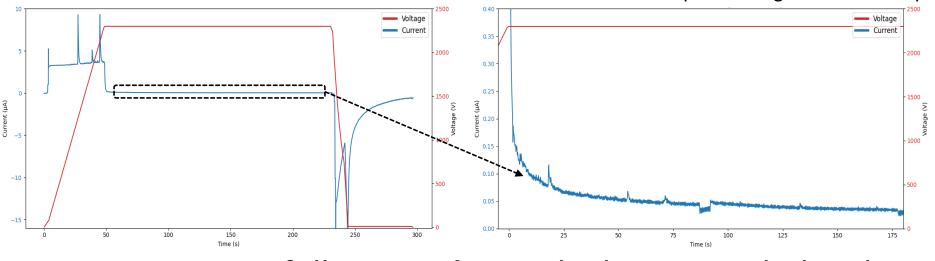
Results: Superconductor cables



Results of the Cold Test of the first HL-LHC Cold Powering System

Results: Splices

	REBCO to MgB	2, GHe @ 20 K	MgB ₂ to Nb-Ti, I	He @ 4.5 K	Nb-Ti to Nb-Ti, LHe @ 4.5 K	
Circuit	REBCO to M	gB ₂ splices	MgB ₂ to Nb-Ti splices		Nb-Ti to Nb-Ti splices	
	R _{splice} measured	R _{splice} expected	R _{splice} measured	R _{splice} expected	R _{splice} measured	R _{splice} expected
18 kA 15 kA	1.4 ± 0.1 nΩ 1.7 ± 0.1 nΩ	1.5 - 2.2 nΩ	1.4 ± 0.1 nΩ 1.4 ± 0.3 nΩ	≤ 1.8 nΩ	0.9 ± 0.1 nΩ 0.9 ± 0.1 nΩ	≤ 2.0 nΩ
2 kA - Trim 2 kA - Correctors	4.3 ± 0.8 nΩ 10.1 ± 1.1 nΩ	4.5 - 6.5 nΩ 9.0 - 13.0 nΩ	1.4 ± 0.2 nΩ 2.4 ± 1.4 nΩ	≤ 3.5 nΩ ≤ 6.0 nΩ	1.2 ± 0.1 nΩ 1.1 ± 0.3 nΩ	≥ ∠.0 IIΩ
2 KA - Correctors		9.0 - 13.0 112	2.4 ± 1.4 1152	<u>≤ 0.0 112</u>	1.1 ± 0.3 112	


15

Results: High Voltage Tests

- At nominal operating conditions & warm gHe
- HV between all circuit combinations and ground

	Circuit	Voltage Time / s		Conditions	Plateau leakage	Test
		/ kV	111112/3	Conditions	current / nA	passed
	18 kA	2.3	180	NOC	32*	Yes
	15 kA	2.3	180	NOC	104*	Yes
	2 kA - Trim	2.3	180	80 NOC 42*	Yes	
	2 kA Corrector #1	2.3	180	NOC	20*	Yes
	2 kA Corrector #2		25*	Yes		
	2 kA Corrector #3		35*	Yes		
-	2 kA Corrector #4	2.3	180	NOC	24*	Yes
5	2 kA Corrector #5	2.3	180	NOC	24*	Yes
	ector #6	2.3	180	*accepte	: ≤ Ἰθ^sµ A	

HV tests successfully passed, NOC leakage x100 below limit

Results: Transient behavior

Successfully validated:

- Cryogenic requirements:
 - Capability of operating without liquid helium supply during 10 minutes with MgB₂-Nb-Ti splices immersed in liquid helium
 - Ability to produce up to 10 g/s gHe with DFX
- Electrical requirement:
 - Circuit cross-talk (< 50 μ H coupling) allowing 100 A/s ramps
 - Quenches of 2 kA Corrector circuits do not trigger QD of any of the other circuits
 - Very low inductance (0.03 μ H) due to coaxial layout

Circuit	Test current	Ramp rate	Inductive coupling (µH)				
Gircuit	(kA)	(A/s)	18 kA	15 kA	2 kA - Trim	2 kA - Correctors	
18 kA	18	100	31.0*	8.1	15.0	2.3	
15 kA	15	100	0.1	0.1*	18.0	0.03	
2 kA - Trim	2				*		
2 kA - Correctors	2	50	0.03	0.03	0.02	1.5*	
C				0	s	*self inductance	

Results of the Cold Test of the first HL-LHC Cold Powering System

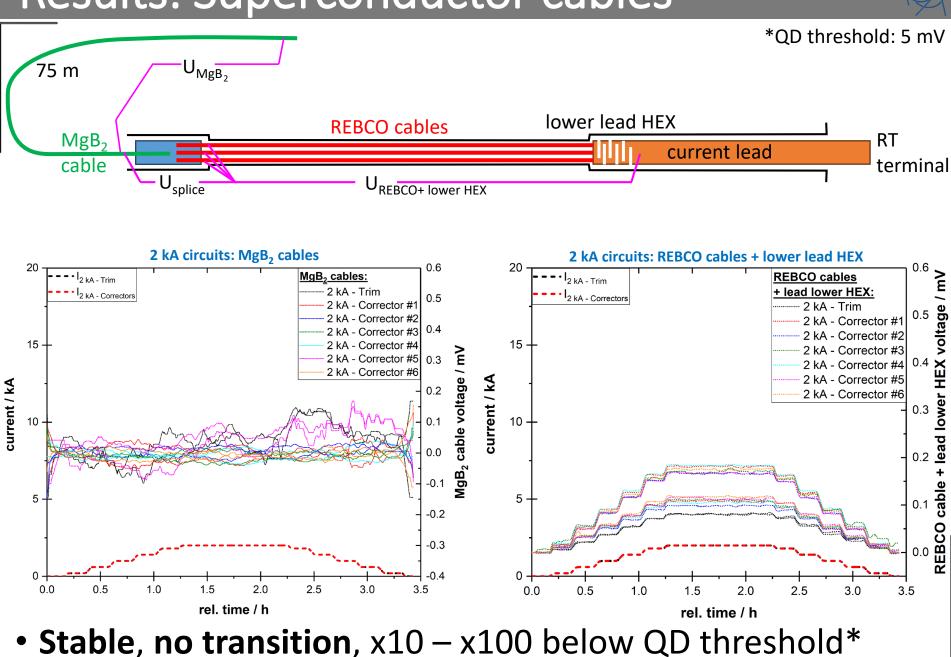
CHRISTIAN BARTH

IT String installation

- Transportability of Cold Powering system demonstrated
- System deployed on IT STRING
- DFX rebuilding & proximity equipment installation ongoing

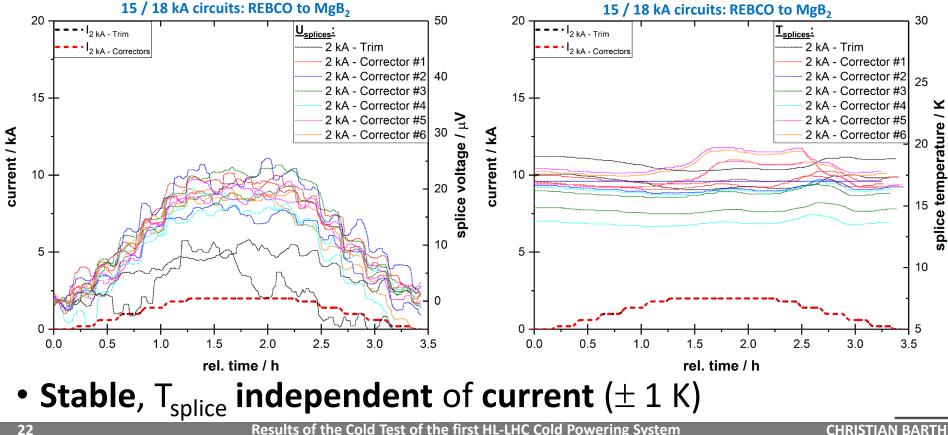
Summary & Conclusion

- CERN
- The first Cold Powering System for the HL-LHC Triplets has been successfully validated:
 - Cryogenic, electrical and mechanical performance all met design parameters
 - Robustness of system in different operating modes was proven
- The system transferred |94| kA* in DC mode with 5.0 g/s gHe:
 - MgB₂ @ 20 K (Operation of MgB₂ cable possible up to 29 K)
 - REBCO cables @ 60 K (Operation of REBCO cables possible up to 70 K)
 - \rightarrow ~ 10 K temperature margin
- Spooling & transportability (incl. crane) demonstrated
- Components industrialized after intensive R&D at CERN
- Systems in advanced phase of series production
- Installation in the LHC underground is planned to start 2027
- *I_{nominal}: 79.2 kA, I_{ultimate}: 85.3 kA


19

- Thank you for your attention -

HL-LHC Cold Powering: 94 kA @ 5.0 g/s gHe


Results: Superconductor cables

Results: Splices

	REBCO to MgB	₂ , GHe @ 20 K	MgB₂ to Nb-Ti, I	He @ 4.5 K	Nb-Ti to Nb-Ti, LHe @ 4.5 K	
Circuit	REBCO to M	lgB₂ splices	MgB ₂ to Nb-Ti splices		Nb-Ti to Nb-Ti splices	
	R _{splice}	R _{splice}	R _{splice}	R _{splice}	R _{splice}	R _{splice}
	measured	expected	measured	expected	measured	expected
18 kA	1.4 ± 0.1 nΩ	1.5 - 2.2 nΩ	1.4 ± 0.1 nΩ	≤ 1.8 nΩ	0.9 ± 0.1 nΩ	
15 kA	1.7 ± 0.1 nΩ	1.5 - 2.2 1152	1.4 ± 0.3 nΩ	<u> </u>	0.9 ± 0.1 nΩ	≤ 2.0 nΩ
2 kA - Trim	4.3 ± 0.8 nΩ	4.5 - 6.5 nΩ	1.4 ± 0.2 nΩ	≤ 3.5 nΩ	1.2 ± 0.1 nΩ	⇒ 2.0 HΩ2
2 kA - Correctors	10.1 ± 1.1 nΩ	9.0 - 13.0 nΩ	2.4 ± 1.4 nΩ	≤ 6.0 nΩ	1.1 ± 0.3 nΩ	

Results of the Cold Test of the first HL-LHC Cold Powering System

