Search for $H^{\pm} \rightarrow \tau v$ and fake τ background estimation in the ATLAS experiment

January 17th, 2023

Monika Juzek (INP PAN)

On behalf of the ATLAS Collaboration

Paper: JHEP 09(2018)139

Introduction

- \blacktriangleright H^{\pm} bosons are predicted in different extensions of the SM that add a second doublet or triplets to the Higgs scalar sector (2HDM, NMSSM, Triplet, etc.)
- Search for charged H^{\pm} decaying to τv using 36.1 fb⁻¹ of $\sqrt{s} = 13$ TeV pp data collected by the ATLAS experiment at the LHC during the 2015 and 2016 run periods
- Investigated signal mass range: 90 GeV $\leq m_{H^{\pm}} \leq$ 2000 GeV
- H^{\pm} production process depends on the mass range but is typically associated with t and *b* quarks
- Analysis split into two sub-channels based on the decay mode of the associated t:
 - **t+jets:** most sensitive to high H^{\pm} mass
 - **t+lepton:** most sensitive to low and intermediate H^{\pm} mass

Event Selection & MVA Strategy

τ+jets channel

- 1 medium τ candidate with $p_T^T > 40$ GeV
- no loose leptons (e or μ) with $p_T > 20$ GeV
- ▶ ≥ 3 jets with p_T > 25 GeV, of which at least one is *b*-tagged
- $E_T^{\text{miss}} > 150 \text{ GeV}$
- ▶ *m*_T > 50 GeV

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\tau} E_{\rm T}^{\rm miss}(1 - \cos \Delta \phi_{\tau,\rm miss})},$$

- MVA: The BDTs (Boosted Decision Trees) are trained to separate signal from all backgrounds separately for τ +jets and τ +lepton events in 5 H^{\pm} mass ranges
- BDT score used as a final discriminant in a likelihood fit

τ+lepton channel

- Exactly 1 ℓ (*e* or μ), with $p_T^{\ell} > 30 \text{ GeV}$
- Exactly 1 medium τ with no additional loose or tighter τ leptons in the event
- ℓ and τ with opposite signs
- $E_T^{miss} > 50 \text{ GeV}$
- \geq 1 *b*-tagged jets

 $\Delta \phi_{\tau,miss}$ - the azimuthal angle between the τ candidate and the direction of E_{T}^{miss}

Background Estimation

- SM backgrounds with true leptons:
 - $t\bar{t}, Wt$
 - \blacktriangleright V+jets
 - diboson events

- SM backgrounds with fake τ leptons:
 - fake lepton $\rightarrow \tau$
 - fake jets $\rightarrow \tau$

 $\blacktriangleright t\bar{t}$ events are main background at low and intermediate H^{\pm} masses, while multi-jets events dominate for high H^{\pm} masses

estimated with data-driven Fake Factor (FF) method

4

Fake Factor Method I

- leptons and depleted in signal.
- The extrapolation from anti- τ ID to τ ID is done by the fake factor (FF) defined as:

$$FF = \frac{N_{\tau}^{CR}(\text{data}) - N_{\tau}^{CR}(MC, \text{true} - \tau)}{N_{\text{anti}-\tau}^{CR}(\text{data}) - N_{\text{anti}-\tau}^{CR}(MC, \text{true} - \tau)} \xrightarrow{\rightarrow}$$

parametrization: p_T^{τ} and numer of tracks (1-track or 3-track τ)

- They are extracted from data in one or multiple control regions (CRs) enriched in the fake jets $\rightarrow \tau$ background.
- In the $H^{\pm} \rightarrow \tau \nu$ analysis FFs are extracted in two CRs:
 - **Multi-jets CR** \rightarrow gluon-initiated jets
 - **W+jets CR** \rightarrow quark-initiated jets

The fake jets $\rightarrow \tau$ background in the region with the nominal object selection (τ ID) is estimated from events with an orthogonal selection, where the object identification requirement is inversed (anti- τ ID). Such sample is rich in fake τ

- Events that pass τ identification
- Events that fail the nominal τ identification

Fake Factor Method II

the formula:

 $FF_{SR}^{comb}(i) = \alpha_{MJ}(i) \times FF$

 α_{MI} parametr is calculated using a template-fit method: creates 2 templates for CRs (distributions for discriminant variables) and then fits it to the SR template

Different origin of fake jets $\rightarrow \tau$ objects (gluons or quarks) results in different misidentification rate (hence different FFs). To obtain proper jets composition in a signal region, FFs from 2 control regions are combined using

$$F_{\rm MJ}(i) + (1 - \alpha_{\rm MJ}(i)) \times FF_{\rm W+jets}(i)$$

2 discriminant variables:

 τ jet width and τ BDT score

Obtained FFs:

Validation plots:

Systematics of Fake Factor method

- Ι. anti- τ sample
- (each bin of their parameterization and for each control region)
- III. the level of contamination of true τ candidates fulfilling the anti- τ selection (varied by 50%)
- IV. the statistical uncertainty of the best-fit value of α_{MI}
- V. for the Y distribution (used in BDT-based τ ID) the uncertainty of the inverse transform sampling method (Smirnov transformation for Υ)
- VI. the modelling of heavy-flavour jets mimicking τ candidates

the lower cut requirement on the τ BDT output score used in the definition of the

II. the statistical uncertainties in the event yields entering the computation of FFs

Systematics of Fake Factor method in $H^{\pm} \rightarrow \tau \nu$ analysis

Source of uncertainty

- Fake factors: jet composition
- Fake factors: statistical uncertainties
- III. Fake factors: prompt $\tau_{had-vis}$ in the anti-
- Fake factors: α_{MJ} uncertainty IV.
- Fake factors: Smirnov transform.
- Fake factors: heavy flavor jet fraction.
- \blacktriangleright Estimation of the fake jets $\rightarrow \tau$ background is the main source of systematic uncertainties in the low- and intermediate-mass H^{\pm} search and the second major source (after the signal modelling) for large H^{\pm} masses

	$\tau_{had-vis}$ +jets	$ \tau_{had-vis}$ +lepton
	Effect on yield	Effect on yield
	1.6%	0.6%
	1.6%	1.7%
i- τ CR	+5.6%	+4.8%
	-8.3%	-7.2%
	7%	6.2%
	0%	0%
	5%	5%

Model-independent limit

Exclusion limits for hMSSM

- ► All tan β values are excluded for $m_{H^{\pm}} \leq 160$ GeV.
- For tan $\beta = 60$ mass of H^{\pm} excluded up to 1100 GeV

Future full Run-2 analysis improvements

General:

- Full run-2 analysis covers a wider mass range than before: $90 \text{ GeV} \le m_{H^{\pm}} \le 2000 \text{ GeV} \rightarrow 80 \text{ GeV} \le m_{H^{\pm}} \le 3000 \text{ GeV}$
- Developed a new E_T^{miss} trigger SF approach
- Switch from BDT-based to RNN-based τ identification (identification) efficiency improved in the range 75–100%)
- Instead of BDTs the Parametrized Neural Networks (PNN) are trained to separate signal from all backgrounds

FF method:

- Optimisation for new RNN-based τ identification
- One discriminant variable for α_{MI} fit: τ jet width
- Systematic errors updates: evaluation of uncertainty from τ Scale Factors and heavy-flavour FFs

From: ATL-PHYS-PUB-2022-044

Summary

- hypothesis.
- New exclusion limits have been set
- Data-driven Fake Factor method for fake taus background estimation was presented as a major source of systematic uncertainties
- Currently getting ready to publish results with full Run 2 (2015-2018) data with improved analysis strategy

The $H^{\pm} \rightarrow \tau \nu$ analysis based on 2015-2016 data collected by ATLAS Collaboration found agreement between data and the background-only

Thank you for your attention!

MVA Strategy

- The BDTs (Boosted Decision Trees) trained to separate signal from all backgrounds separately for τ +jets and τ +lepton events, numer of associated tracks to τ
- The training uses FastBDT library via the TMVA toolkit
- Signal samples are divided into H⁺ mass ranges:
 - 80 120 GeV
 - 130 160 GeV
 - 170 190 GeV
 - 200 400 GeV
 - 500 3000 GeV
- Background modeling and and BDT training kept statistically independent via the k-fold method (k = 5)

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Background
Partition 1	Evaluation	Train	Train	Train	Train	Fold 1
Partition 2	Train	Evaluation	Train	Train	Train	Fold 2
Partition 3	Train	Train	Evaluation	Train	Train	Fold 3
Partition 4	Train	Train	Train	Evaluation	Train	Fold 4
Partition 5	Train	Train	Train	Train	Evaluation	Fold 5

MVA input variable $\tau + jets$ $\tau + lep$ $E_{\rm T}^{\rm miss}$ $p_{ au}^{\dot{b} ext{-jet}}$ p_{T}^{\sim} $\Delta \phi_{ au, ext{miss}}$ $\Delta \phi_{b ext{-jet,miss}}$ $\Delta \phi_{\ell, \text{miss}}$ $\Delta R_{ au,\ell}$ $\Delta R_{b ext{-jet},\ell}$ $\Delta R_{b ext{-jet}, au}$ \checkmark^*

(* only used for 1p au, 90-400 GeV)

Model-independent limit for $90 \, { m GeV} < m_{H^{\pm}} < 160 \, { m GeV}$

Definitions of control regions used in FF method

Multi-jets CR

at least one reconstructed τ_{had} candidate with $p_T^{\tau} > 30 \text{ G}$ number of jets 1 b-jet veto, electron and muon veto $E_T^{miss} < 80 \text{ GeV}$ $m_T(\tau, E_T^{miss}) > 50 \text{ GeV}$ transformed τ_{had} BDT score > 0.02

	W+jets CR
leV	at least one reconstructed $\tau_{\rm had}$ candidate with $p_{\rm T}^{\tau} > 30~{\rm G}$
	one lepton (electron or muon)
	<i>b</i> -jet veto
	$p_{\rm T}$ of electron or muon > 30 GeV
	$60 < m_{\rm T}(l, E_{\rm T}^{\rm miss}) < 160 GeV$
	transformed $\tau_{\rm had}~{\rm BDT}~{\rm score} > 0.02$

Υ correction of fake τ candidates

- different for τ and anti-τ candidates)
- candidates in the SRs
- the shapes of Υ (separately for τ and anti- τ candidates)
- anti-τ candidates, as follows:

$$\Upsilon_{\tau_{\text{had-vis}}} = F_{\tau_{\text{had-vis}}}^{-1}(F_{\text{anti-}\tau_{\text{had-vis}}}(\Upsilon))$$

*L. Devroye, Non-Uniform Random Variate Generation, published by Springer, 1986

The FF method does not correctly predict the shape of Υ measured in the SR (distribution of Υ is

Inverse transform sampling method^{*} is employed to model the shape of Y for misidentified τ

In the CRs where FFs are measured, cumulative distribution functions F(Y) are calculated from

 \blacktriangleright Next, in the SRs the shape of Y predicted for τ candidates is derived from that measured for

Systematic errors as a function of $m_{H^{\pm}}$

Source of systematic	Impact on the expected limit (stat. only) in %			
uncertainty	$m_{H^+} = 170 \text{ GeV}$	$m_{H^+} = 1000 \text{ GeV}$		
Experimental				
luminosity	2.9	0.2		
trigger	1.3	< 0.1		
$ au_{ m had-vis}$	14.6	0.3		
jet	16.9	0.2		
electron	10.1	0.1		
muon	1.1	< 0.1		
$E_{\mathrm{T}}^{\mathrm{miss}}$	9.9	< 0.1		
Fake-factor method	20.3	2.7		
Y modelling	0.8	_		
Signal and background models				
<i>tī</i> modelling	6.3	0.1		
W/Z+jets modelling	1.1	< 0.1		
cross-sections $(W/Z/VV/t)$	9.6	0.4		
H^+ signal modelling	2.5	6.4		
All	52.1	13.8		

