

Search for lepton flavour violation at LHCb

Jakub Malczewski IFJ PAN Kraków on behalf of the LHCb collaboration

Why lepton flavour violation (LFV)?

- LFV decays are forbidden in the SM
- Access to much larger masses of New Physics particles than in direct searches
- Neutrino oscillations lead to LFV for neutral leptons
- No LFV process for charged leptons observed yet
- Clear null-tests of the SM

arXiv:2207.04005

 ${\cal B}(B^0 o K^{*0} \mu^\pm e^\mp) < 10.1 imes 10^{-9} \ {\cal B}(B^0_s o \phi \mu^\pm e^\mp) < 16.0 imes 10^{-9}$

Example of beyond-SM process with leptoquark

JHEP 02 (2015) 121

$$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 4.6 \times 10^{-8}$$

Phys. Lett. B754 (2016) 167

$$\mathcal{B}(D^0 \to e^{\pm} \mu^{\mp}) < 1.3 \times 10^{-8}$$

LFV in theoretical framework

There are several proposition for a LFV models, some within the experimental range of near future detectors.

Models	References	$\tau \rightarrow \mu \gamma$	
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908	10 ⁻⁵⁴ -10 ⁻⁴⁰	v_{τ} v_{μ}
SUSY + Higgs	Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517	10 ⁻¹⁰	τ μ
SM + Maj v _R	Cvetic, Dib, Kim, Kim, PRD 66 (2002) 034008	10 ⁻⁹	w Z w
Non-universal Z'	Yue, Zhang, Liu, PLB 547 (2002) 252	10 ⁻⁹	ζγ
mSUGRA + Seesaw	Ellis et al. EPJ C14 (2002) 319 Antusch et al. JHEP 11 (2006) 090	10 ⁻⁸ - 10 ⁻¹²	
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama et al. EPJ C56 (2008) 125	10 ⁻⁸ - 10 ⁻¹⁰	$\mathcal{B}(\tau^- \to \mu^- \gamma) < 4.5 \times 10^{-8},$
MLFV	Cirigliano, Grinstein, NPB 752 (2006) 18	10 ⁻⁸	$\mathcal{B}(\tau^- \to e^- \gamma) < 12.0 \times 10^{-\circ}$
Little Higgs	Goto et al, PRD 83 (2011) 053011 Rai Choudhury et al. PRD 75 (2007) 055011	10 ⁻⁸ - 10 ⁻¹¹	Phys.Lett.B666:16-22,2008
Lepton Flavour V			

Effective Hamiltonian

It is also possible to define a model independent description, by adding additional Wilson coefficients and related operators.

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \,\frac{\alpha}{4\pi} \, V_{tb} V_{ts}^* \sum_i \left(C_i^\ell \mathcal{O}_i^\ell + C_i'^\ell \mathcal{O}_i'^\ell \right)$$

$$\mathcal{O}_9^\ell = \left(\overline{s}\gamma_\mu P_L b\right) \left(\overline{\ell}\gamma^\mu \ell\right)$$

$$\mathcal{O}_{10}^{\ell} = \left(\overline{s}\gamma_{\mu}P_{L}b\right)\left(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell\right)$$

Search for the lepton-flavour violating decays

Signal:

$$B^0 \to K^{*0} \mu^{\pm} e^{\mp}$$
$$B^0_s \to \phi \mu^{\pm} e^{\mp}$$

Normalisation:

$$\begin{split} B^0_s &\to J\!/\!\psi(\to \mu^+\mu^-)\phi \\ B^0 &\to J\!/\!\psi(\to \mu^+\mu^-)K^{*0} \end{split}$$

Signal branching fraction:

$$\mathcal{B}_{\mathrm{sig}} = \frac{\mathcal{B}_{\mathrm{norm}}}{N_{\mathrm{norm}}} \times \frac{\varepsilon_{\mathrm{norm}}}{\varepsilon_{\mathrm{sig}}} \times N_{\mathrm{sig}}$$

Search for the lepton-flavour violating decays

Analysis Strategy

- blind analysis (signal window [4900, 5600] MeV)
- full LHCb luminosity (9 fb⁻¹)
- two charge categories:

 $\begin{array}{c} B^0 \rightarrow K^{*0} \mu^+ e^- \\ B^0 \rightarrow K^{*0} \mu^- e^+ \end{array}$

- muon hardware trigger
- selection with BDT classifier

Results

$\Lambda_c \rightarrow pe\mu \text{ decay}$

- Main goal of the analysis is to measure or set the limit on the $\Lambda_c \rightarrow pe\mu$ decay rate relative to the $\Lambda_c \rightarrow p\phi(\mu\mu)$ channel
- Data sample: Run2 2016, 2017, 2018
- Samples split between two bremsstrahlung categories
- Samples split between two charge combinations:
 - $\Lambda_c^+ \to p^+ e^+ \mu^-$ (SS) BF < 9.9 × 10⁻⁶ CL = 90%
 - $\Lambda_c^+ \to p^+ e^- \mu^+$ (OS) BF < 1.9 × 10⁻⁵ CL = 90%

BaBar Phys. Rev. D 84, 072006

- Blind analysis Λ_c mass signal region removed from the data
- Signal branching fraction:

$$\mathcal{B}_{\mathrm{sig}} = rac{\mathcal{B}_{\mathrm{norm}}}{N_{\mathrm{norm}}} imes rac{arepsilon_{\mathrm{norm}}}{arepsilon_{\mathrm{sig}}} imes N_{\mathrm{sig}}$$

Experimental challenges - bremsstrahlung

- Electrons in LHCb can lose some energy via bremsstrahlung radiation before reaching calorimeter.
- Very difficult in charm decays where electrons are slow and mass resolution is very limited.
- Same process is negligible for muons at this energy scale.

This process changes a mass distribution for decays with electrons in a final state.

Experimental challenges – misidentification

Misidentified background from hadronic decays is especially problematic, because it is usually located near the expected signal peak, which combined with a low statistic character of the measurement can reduce the sensitivity.

Looking into the future

Presented today results were calculated based on 9 fb⁻¹ sample. Ultimately, the LHCb project is going to collect 300 fb⁻¹, which will significantly increase sensitivity to the NP in LFV and FCNC sectors.

LHCB-PUB-2018-009 LHCB-TDR-023

Summary

- LFV processes are good probes for a New Physics particles
- Experiments are starting to get closer to the branching fractions predicted by theories
- One have to take into account experimental limitations like for example: bremsstrahlung and misidentification
- Higher statistics from HL-LHC will significantly improve current upper limits

$J/\psi ightarrow au\mu$					
$B^0 ightarrow \mu e$					
$B^0 o au e$					
$B^0 o au \mu$					
$B \to K \mu e$					
$B \to K^* \mu e$					
$B^+ \to K^+ \tau e$					
$B^+ \to K^+ \tau \mu$					
$B_s^0 o \mu e$					
$B^0_s o au\mu$					

Backup

Clear null-tests of the SM

SM does not include any LFV processes and similar non-LFV decays are strongly suppressed at the tree-level.

Mod. Phys. Lett. A 36 (2021) 2130002

$D^0 \rightarrow \mu^+ e^-$	$D_{(s)}^+ \rightarrow \pi^+ l^+ l^-$	$D^0 \to \pi^- \pi^+ V(\to ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D_{(c)}^{(0)} \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V (\to ll)$	$D^+ \rightarrow \sigma^+ f(\rightarrow ll)$
(3)	$D^0 \to K^{*0} l^+ l^-$	$D^0 \rightarrow \phi \ V(\rightarrow ll)$	$D_{\rm s} \to \pi \ \varphi(\to ll)$

LFV, LNV,	BNV	FCNC					VMD	1	Radiative			
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10-4
$D^+_{(s)} \rightarrow h^- l^+ l^+$ $D^0 \rightarrow X^0 \mu^+ e^-$ $D^0 \rightarrow X^{} l^+ l^+$			D^0	$D^0 \rightarrow ee$	$\rightarrow \mu\mu$	$D^{0} \to \pi$ $D^{0} \to \rho$ $D^{0} \to K^{*}$ $D^{0} \to \phi$	$\pi^{+}l^{+}l^{-}$ $l^{+}l^{-}$ $K^{-}l^{+}l^{-}$ $l^{+}l^{-}$	$D^{0} \rightarrow D^{0} \rightarrow D^{0$	$K^{+}\pi^{-}V(-K^{*0}V(-K^{*0})$	→ II) D II) D D	$f^{+} \rightarrow \pi^{+} \phi$ $f^{0} \rightarrow K^{-} \pi$ $f^{0} \rightarrow K^{*0} V$	$(\rightarrow ll)$ +V(\rightarrow ll) V(\rightarrow ll)