Two-photon fusion production of e^+e^- in proton-lead collision

Barbara Linek^{1,2}

In collaboration with Marta Łuszczak², Wolfgang Schäfer³ and Antoni Szczurek^{2,3}

XXIX Cracow EPIPHANY Conference

16-19 January 2023

¹Doctoral School of the University of Rzeszow, Poland ²Institute of Physics, University of Rzeszow, Poland ²The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences

Phys. Rev. D 106, 094034 (2022)

Introduction

- γ - γ processes in nucleus-nucleus collisions are separated into real-hadron collisions ($b < R_1 + R_2$) and ultraperipheral collisions ($b > R_1 + R_2$);
- Two-photon processes survive also in semi-central collisions in which dominate at very small transverse momenta of the dilepton;
- There are not careful analyses of gamma-gamma processes in proton-nucleus collisions;
- The last year's ALICE experimental analysis allows to thoroughly investigate the contribution of photon-initiated production of e⁺e⁻ in proton-nucleus collisions and compare the results to experimental data;

Barbara Linek

Introduction

- There are analysed only two types of processes: double-elastic and single dissociation because of being a source of "elastic" photons through the nucleus;
- The used formalism is the k_T factorization approach;
- This analysis covers four approaches to structure functions;
- Dilepton production with rapidity gap between the nucleus and high-p_T leptons is suggested to be a probe of the photon partonic content of the proton.

Classes of $\gamma \gamma \rightarrow l^+ l^-$ mechanism and $k_T -$ factorization approach

The cross section for production of l^+l^- in proton-lead collisions in the k_T – factorization approach can be written as:

$$\sigma = S^2 \int dx_p dx_{Pb} \frac{d^2 \overrightarrow{q_T}}{\pi} \left[\frac{d\gamma_{el}^p(x_p, Q^2)}{dQ^2} + \frac{d\gamma_{inel}^p(x_p, Q^2)}{dQ^2} \right] \times \gamma_{el}^{Pb}(x_{Pb}, Q^2) \sigma_{\gamma^* \gamma \to l^+ l^-}(x_p, x_{Pb}, \overrightarrow{q_T})$$

Barbara Linek

Fluxes of elastic photons

The proton elastic flux is expressed by the proton electromagnetic form factor:

$$\frac{d\gamma_{el}^p(x_p, Q^2)}{dQ^2} = \frac{\alpha_{em}}{\pi} \left\{ \left(1 - \frac{x}{2}\right)^2 \frac{4m_p^2 G_E^2(Q^2) + Q^2 G_M^2(Q^2)}{4m_p^2 + Q^2} + \frac{x^2}{4} G_M^2(Q^2) \right\}$$

For the nucleus elastic flux the following is replaced:

$$\frac{4m_p^2 G_E^2(Q^2) + Q^2 G_M^2(Q^2)}{4m_p^2 + Q^2} \to Z^2 F_{em}^2(Q^2), \qquad F_{em}(Q^2) = \frac{3}{(QR_A)^3} [\sin(QR_A) - QR_A \cos(QR_A)] \frac{1}{1 + a^2 Q^2}$$

Barbara Linek

The high-energy factorization

The inelastic flux is expressed by the proton structure functions $F_1(x_{Bj}, Q^2)$ and $F_2(x_{Bj}, Q^2)$:

$$\frac{d\gamma_{inel}^p(x_p,Q^2)}{dQ^2} = \frac{1}{x} \int_{M_{thr}^2} dM_X^2 \,\mathcal{F}_{\gamma^* \leftarrow p}^{in}(x,\vec{q}_T^2,M_X^2)$$

where:

$$\mathcal{F}_{\gamma^* \leftarrow p}^{in}(x, \vec{q}_T^2, M_X^2) = \frac{\alpha_{em}}{\pi} \left\{ (1-x) \left(\frac{\vec{q}_T^2}{\vec{q}_T^2 + x \left(M_x^2 - m_p^2 \right) + x^2 m_p^2 \right)^2} \frac{F_2(x_{Bj}, Q^2)}{Q^2 + M_X^2 - m_p^2} + \frac{x^2}{4x_{Bj}^2} \frac{\vec{q}_T^2}{\vec{q}_T^2 + x \left(M_X^2 - m_p^2 \right) + x^2 m_p^2} \frac{2x_{Bj} F_1(x_{Bj}, Q^2)}{Q^2 + M_X^2 - m_p^2} \right\}$$

In practice we use function $F_L(x_{Bj}, Q^2)$ instead of $F_1(x_{Bj}, Q^2)$:

$$F_L(x_{Bj},Q^2) = \left(1 + \frac{4x_{Bj}^2 m_p^2}{Q^2}\right) F_2(x_{Bj},Q^2) - 2x_{Bj}F_1(x_{Bj},Q^2)$$

Barbara Linek

Structure functions arguments

• Photon virtuality:

$$Q^{2} = \frac{\vec{q}_{T}^{2} + x(M_{X}^{2} - m_{p}^{2}) + x^{2}m_{p}^{2}}{1 - x};$$

• Bjorken-x:

$$x_{Bj} = \frac{Q^2}{\left(Q^2 + M_X^2 - m_p^2\right)};$$

• Invariant mass of the hadronic final state:

$$W^2 = \frac{1 - x_{Bj}}{x_{Bj}}Q^2 + m_p^2;$$

Barbara Linek

Different parametrizations of structure functions depending on W^2 and Q^2

Barbara Linek

Distributions in $p_{T_{e^+e^-}}$

Phys.Rev.C 102, 055204 (2020), arXiv: 2005.11995

Barbara Linek

Distributions in $Y_{e^+e^-}$

Barbara Linek

Two-photon fusion production of e^+e^- in proton-lead collision

Distributions in $M_{e^+e^-}$

Barbara Linek

Two-photon fusion production of e^+e^- in proton-lead collision

Distributions in $\log_{10}(W_1^2)$

Barbara Linek

Two-photon fusion production of e^+e^- in proton-lead collision

Distributions in $\log_{10} x_{Bj}$ and $\log_{10} Q^2$

Barbara Linek

Two-photon fusion production of e^+e^- in proton-lead collision

Distributions in W^2 and Q^2

Barbara Linek

Total cross section for different approaches

Structure function approaches	$\sigma_{LMR} (nb)$	$\sigma_{IMR}(nb)$
elastic	2938.72	507.04
LUX-like	346.53	191.40
Kulagin-Barinov	387.93	205.27
Fiore et al.	653.07	347.08
ALLM	329.72	179.07

Barbara Linek

Total cross section from SuperChic generator including gap survival factor

Mass region	Without soft S_G (nb)	With soft S _G (nb)	$\langle S_G \rangle$
0.5 - 5 (GeV)	755.91	718.84	0.95
5 – 10 (GeV)	687.74	623.27	0.91
10 – 15 (GeV)	98.68	87.01	0.88
15 – 20 (GeV)	28.23	24.33	0.86

Barbara Linek

Conclusions

- We have calculated the photon-photon contribution to the inclusive production of e⁺e⁻ pair in proton-lead collisions;
- Our results are compared to the existing data measured by ALICE collaboration;
- Although the contribution of two-photon processes is negligible, however it is interesting and could be experimentally tested in the future;
- It was shown the sensitiveness to the nonperturbative regions and broad range of Bjorken-x;
- Various parametrizations used treat this area of structure functions slightly differently and Fiore
 et al. parametrization is the most different from the others;
- The gap survival factor depends on the dielectron invariant mass decreasing the cross section by 5% 15%.

Thank you for your attention

Barbara Linek

