Constraining two Higgs doublet models with heavy lepton decays

Zofia Olszewska

Institute of Theoretical Physics, University of Warsaw

EPIPHANY 2023

Based on the work by Z.Olszewska, S.Pokorski, K.Sakurai arXiv: hep-ph 23XX.

Zofia Olszewska (IFT UW)

Constraining two Higgs doublet models with I

EPIPHANY 2023

Outline

- Motivation
- Mechanisms of LFUV
- Old Calculation of tau decay
- ④ Results
- Sonclusions and Outlook

→ ∃ →

< 4[™] >

э

2/11

Motivation

- Focus on indirect searches for NP effects in precision observables.
- Search for the violation of (approximate) symmetries of the SM.
- We can observe sizable effects even if the mass scale is quite high.

Lepton Flavor Universality

- Lepton Flavor Universality is as a symmetry of the SM at the Lagrangian level
- The aim of this work is to make constraints on SUSY parameters by considering lepton flavour universality in τ decays.
- Sensitivity to beyond SM processes because of the high τ mass \rightarrow enhanced couplings to a hypothetical charged Higgs boson or other non-SM processes.

$$\mathcal{R}_D = \frac{\Gamma(B \to D\tau\bar{\nu})}{\Gamma(B \to D\{e/\mu\}\bar{\nu})} \tag{1}$$

and

$$\mathcal{R}_{D^*} = \frac{\Gamma(B \to D^* \tau \bar{\nu})}{\Gamma(B \to D^* \{e/\mu\} \bar{\nu})}$$
(2)

Experimental measurements

Particle Data Group Average (2016)

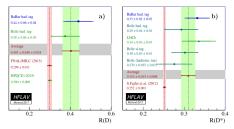
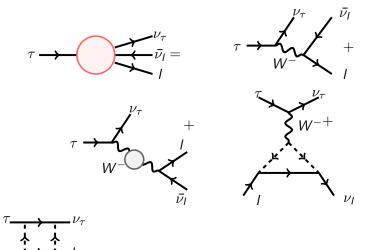


Figure 67: (a) Measurement of $\mathcal{R}(D)$ and (b) $\mathcal{R}(D^*)$. The average is the projection of the average obtained from the combined fit.

Parameter	σ
R(D)	2.2
$R(D^*)$	3.4
combined	3.9

Table: SM deviation


Zofia Olszewska (IFT UW)

Constraining two Higgs doublet models with I

э

One loop corrections to tau decay

Tree-level process present in the SM.

Same diagrams with charged Higgs H^{\pm} .

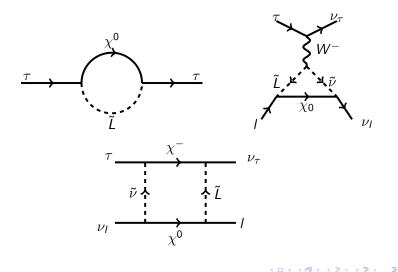
Zofia Olszewska (IFT UW)

Constraining two Higgs doublet models with I

EPIPHANY 2023

In the framework of the MSSM the non-universal contributions arise from

- tree level H^{\pm}
- different slepton masses in the loops.


First type suppressed by

$$\frac{m_{\tau}m_{l}}{M_{H^{\pm}}^{2}}\tan^{2}\beta \tag{3}$$

- ∢ ⊒ →

э

Dominant contributions

Zofia Olszewska (IFT UW)

Constraining two Higgs doublet models with I

EPIPHANY 2023

• • • • • • • • • •

∃ →

Conclusions and Outlook

- **1** Perform the complete 1-loop calculation of $au o \mu/e
 u_{ au}
 u_{I}$
- Opdate the limits for sparticles based on the experimental data.
- Include other τ decays (f.e. $\tau \to \pi^- \nu_{\tau}$).

BACKUP

Zofia Olszewska (IFT UW) Constraining two Higgs doublet models with I E

EPIPHANY 2023

・ロト ・四ト ・ヨト ・ヨト

3

SM predictions

Compared to $B^+ o au
u_{ au}$, the $B o D^{(*)} au
u_{ au}$ decay has advantages:

- the branching fraction is relatively high, because it is not Cabibbo-suppressed,
- it is a three-body decay allowing access to many observables besides the branching fraction, such as $D^{(*)}$ momentum, q^2 distributions, and measurements of the D^* and τ polarisations

The SM predictions:

- $R(D) = 0.300 \pm 0.008$
- $R(D) = 0.252 \pm 0.003$