

First observation and branching fraction measurement of the $\Lambda_b^0 \rightarrow D_s^- p$ decay

Maciej Giza, on behalf of the LHCb collaboration

17 January 2023, XXIX Cracow Epiphany Conference, IFJ PAN

[arXiv:2212.12574]

Introduction

Motivation

- $\Lambda^0_b \to D^-_s p$ not yet observed
- Background in CKM γ angle measurement using $B^0_s \to D^\mp_s K^\pm$ decays
- Hadronic decay probing amplitude of $b \to u$ transition
 - Only first order diagram
- $\mathcal{B}(\Lambda_b^0 \to D_s^- p) \propto |V_{ub}|^2 |a_{\rm NF}(D_s^- p)|^2 |F_{\Lambda_b^0 \to p}|^2 f_{D_s}^2$
 - f_{D_s} Decay constant
 - $F_{\Lambda^0_b o p}$ Form factor
 - $a_{\rm NF}$ Non-factorisable effects, due to QCD interactions between $D_{\rm s}$ meson and a proton
- Similar to $B^0
 ightarrow D_s^- \pi^+ \, {\rm decay}$ [Eur. Phys. J. C 81, 314 (2021)]

Introduction

Motivation

- $\Lambda_b^0 \rightarrow D_s^- p$ not yet observed
- Background in CKM γ angle measurement using $B^0_s \to D^\mp_s K^\pm$ decays
- Hadronic decay probing amplitude of $b \to u$ transition
 - Only first order diagram
- $\mathcal{B}(\Lambda_b^0 \to D_s^- p) \propto |V_{ub}|^2 |a_{\rm NF}(D_s^- p)|^2 |F_{\Lambda_b^0 \to p}|^2 f_{D_s}^2$
 - f_{D_s} Decay constant
 - $F_{\Lambda^0_h o p}$ Form factor
 - $a_{\rm NF}$ Non-factorisable effects, due to QCD interactions between $D_{\rm s}$ meson and a proton
- Similar to $B^0
 ightarrow D_s^- \pi^+ \, {\rm decay}$ [Eur. Phys. J. C 81, 314 (2021)]

Method of branching fraction determination

- Normalisation channel: $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$
 - Topologically similar and high statistics decay

•
$$\mathcal{B}(\Lambda_b^0 \to D_s^- p) = \frac{N_{\Lambda_b^0 \to D_s^- p}}{N_{\Lambda_b^0 \to \Lambda_c^+ \pi^-}} \frac{\epsilon_{\Lambda_b^0 \to \Lambda_c^+ \pi^-}}{\epsilon_{\Lambda_b^0 \to D_s^- p}} \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-) \frac{\mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)}{\mathcal{B}(D_s^- \to K^- K^+ \pi^-)}$$

- Yields ⇒ Invariant mass fits
- Efficiencies \Rightarrow Calculate using MC corrected by data
- Branching fractions \Rightarrow PDG

Event selection

- Full Run 2 data-set (6 fb⁻¹) collected by the LHCb detector
- Preselection of tracks with high transverse momentum
- Good-quality of *b*-hadron and *c*-hadron vertices
- Combinatorial background suppressed by BDTG (Gradient-Boosted Decision Tree). Use of geometrical and kinematic variables like transverse momentum, vertex fit χ^2 and flight distance
- Explicit vetoes of cross-feed backgrounds
- Particle identification (PID) of the final state particles

Selection - particle identification

Selection efficiencies – intermediate results

A breakdown of the relative efficiency ratios of the $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and $\Lambda_b^0 \to D_s^- p$ decays, calculated after applying the preceding requirements.

Requirement	Ratio $\epsilon(\Lambda_b^0 \to \Lambda_c^+ \pi^-) / \epsilon(\Lambda_b^0 \to D_s^- p)$
LHCb acceptance Software trigger and preselection Kinematic and geometric selection Particle identification selection Hardware trigger	$\begin{array}{r} 0.9625 \pm 0.0016 \\ 1.1370 \pm 0.0026 \\ 0.7580 \pm 0.0018 \\ 1.278 \ \pm 0.005 \\ 0.995 \ \pm 0.006 \end{array}$
Total	1.070 ± 0.010

Invariant mass fits

Control samples

• Use control samples to constrain misidentified backgrounds in signal sample

Control samples

Normalisation sample

Fit to
$$\Lambda_b^0 \to D_s^- p$$
 candidates

Main components:

• $\Lambda^0_b \to D^-_s p$ signal

•

- Combinatorial background
- Partially reconstructed background $\Lambda_b^0 \to D_s^{*-} p$
- Misidentified backgrounds

Fit to $\Lambda_b^0 \rightarrow D_s^- p$ candidates - $D_s^- \pi^+$ sample

Misidentified backgrounds: $D_s^-\pi^+$ -like

- Data-driven strategy
- Very clean, high statistic mode
- Same selection except companion PID cut
- Obtained yields of:

•
$$B_s^0 \rightarrow D_s^- \pi^+$$

• $B_s^0 \rightarrow D_s^- \rho^+$
• $B_s^0 \rightarrow D_s^{*-} \pi^+$
• $B_s^0 \rightarrow D_s^{*-} \rho^+$

under the $A^0_b
ightarrow D^-_s p$ hypothesis

Fit to $\Lambda_b^0 \to D_s^- p$ candidates - $D_s^- K^+$ sample

Misidentified backgrounds: $D_s^- K^+$ -like

- Data-driven strategy
- Very clean, high statistic mode
- Same selection except companion PID cut
- Obtained yields of:

•
$$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$$

• $B_s^0 \rightarrow D_s^{*\mp} K^{\pm}$
• $B_s^0 \rightarrow D_s^{\mp} K^{*\pm}$
• $B_s^0 \rightarrow D_s^{*\mp} K^{*\pm}$
• $B_s^0 \rightarrow D_s^{*\mp} K^{*\pm}$
• $B^0 \rightarrow D_s^{-\pi} K^{+}$

•
$$B^0 \to D_s^{*-} K^+$$

under the $\Lambda_b^0
ightarrow D_s^- p$ hypothesis

 $D_s^- K^+$ -like components

• $N_{A_{L}^{0} \to D_{s}^{-} p} = 831 \pm 32$ Fit to $\Lambda_b^0 \rightarrow D_s^- p$ candidates - result **Crystal clear discovery** $\blacksquare A_b^0 \to D_s^{*-}p \qquad \blacksquare B_s^0 \to D_s^{*\mp}K^{*\pm} \qquad \blacksquare B_s^0 \to D_s^{*\mp}K^{\pm} \qquad \blacksquare B_s^0 \to D_s^{*-}\rho^+ \qquad \blacksquare B_s^0 \to D_s^{*-}\pi^+$ + Data $\square Combinatorial \implies B^0 \to D_s^- K^+$ Candidates / $(10 \,\mathrm{MeV}/c^2)$ $(10 \,\mathrm{MeV}/c^2)$ LHCb LHCb $6\,\mathrm{fb}^{-1}$ 10^2 $6\,\mathrm{fb}^{-1}$ 200 10^{1} 100

Normalisation channel: fit to $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ candidates

Main components:

- $\Lambda^0_b
 ightarrow \Lambda^+_c \pi^-$ signal
- Combinatorial background
- Partially reconstructed backgrounds

•
$$\Lambda^0_b \to \Lambda^+_c \rho^-$$
 and $\Lambda^0_b \to \Sigma^+_c \pi^-$

- Misidentified backgrounds
 - $B^0 \rightarrow D^- \pi^+$ and $B^0_s \rightarrow D^-_s \pi^+$ yields obtained in a data-driven way
 - $\Lambda_b^0 \to \Lambda_c^+ K^-$ yield calculated using corresponding branching fractions and efficiencies

Systematic uncertainties

Source	Relative uncertainty $(\%)$
Invariant-mass fits:	
$m(D_s^-p)$ fit:	
Signal parametrisation	0.54
Combinatorial background parametrisation	0.73
Constrained/fixed yields	0.71
Specific background parametrisation	0.89
$m(\Lambda_c^+\pi^-)$ fit:	
Signal parametrisation	0.27
Combinatorial background parametrisation	0.04
Constrained/fixed yields	0.03
Specific background parametrisation	0.01
Efficiencies:	
PID efficiency	0.49
hardware trigger efficiency	1.15
Reconstruction efficiency	0.50
Total	2.01

Branching fraction result

Reminder (Obtaining the branching fraction)

•
$$\mathcal{B}(\Lambda_b^0 \to D_s^- p) = \frac{N_{\Lambda_b^0 \to D_s^- p}}{N_{\Lambda_b^0 \to \Lambda_c^+ \pi^-}} \frac{\epsilon_{\Lambda_b^0 \to \Lambda_c^+ \pi^-}}{\epsilon_{\Lambda_b^0 \to D_s^- p}} \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-) \frac{\mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)}{\mathcal{B}(D_s^- \to K^- K^+ \pi^-)}$$

- Yields ⇒ Invariant mass fits
- Efficiencies \Rightarrow Calculate using MC corrected by data
- Branching fractions \Rightarrow PDG

Results

Inputs for the branching fraction measurement

	$\Lambda_b^0 \to D_s^- p$	$\Lambda_b^0 \to \Lambda_c^+ \pi^-$
Yield Efficiency	831 ± 32 $(0.1819 \pm 0.0013)\%$	$(4.047 \pm 0.007) \times 10^5$ $(0.1947 \pm 0.0012)\%$
$ \begin{array}{c} \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-) \\ \mathcal{B}(D_s^- \to K^- K^+ \pi^-) \\ \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+) \end{array} $	(4.9 ± 0.4) (5.38 ± 0.1) (6.28 ± 0.3)	$) \times 10^{-3}$ $0) \times 10^{-2}$ $2) \times 10^{-2}$

•
$$\frac{\mathcal{B}(\Lambda_b^0 \to D_s^- p)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = (2.56 \pm 0.10 \pm 0.05 \pm 0.14) \times 10^{-3}$$

- $\mathcal{B}(\Lambda_b^0 \to D_s^- p) = (12.6 \pm 0.5 \pm 0.3 \pm 1.2) \times 10^{-6}$
- World's first measurement of this branching fraction

Thank you for your attention!

home.cern

Previous limit for $\Lambda_b^0 \rightarrow D_s^- p$ **branching fraction:**

5 I	pD_s^-			< 4.8	$8 imes 10^{-4}$	CL=90%	% 23	64
$\Gamma(\ \Lambda^0_b o p)$	$D_s^- \;)/\Gamma_{ m total}$						Γ_{55}/Γ	-
VALUE		CL%	DOCUMENT ID		TECN	COMMENT		
< 4.8 $ imes$	10-4	90	AAIJ	2014Q	LHCB	pp at 7 TeV		
References:								
AAIJ 201	14Q JHEP 1404 087 Searc of the	ches for Λ^0_b a e $\Lambda^0_b o K^0_S$ p	nd $arpi_b^0$ Decays to K^0_S o π^- Decay	$p\pi^-$ and	$K^0_S \ pK^-$ Final	States with First	Observat	ion

Fit to $\Lambda_b^0 \to D_s^- p$ candidates

 $\Lambda^0_b \rightarrow D^-_s p$ signal:

• Sum of a double-sided Hypatia and a Johnson S_U distribution

Partially reconstructed background $A_b^0 \rightarrow D_s^{*-} p$:

• Used the sum of a RooHORNSdini and a RooHILLdini function

Combinatorial background:

- Not exponential
 - Due to changed mass hypothesis of companion $\pi^+
 ightarrow p$
- Described by RooDstD0BG:

$$\mathcal{C}(m|m_0, A, C) = (1 - exp(-\frac{m - m_0}{C})) \times (\frac{m}{m_0})^A$$

• Exponential used for determination of systematic uncertainty

Johnson S_U function:

Having defined the following parameters:

$$\begin{split} w &= e^{\tau^2} \\ \omega &= -\nu\tau, \\ c(\nu,\tau) &= \frac{1}{\sqrt{\frac{1}{2}(w-1)\left(w\cosh 2\omega + 1\right)}} , \\ z(m|\mu,\sigma,\nu,\tau) &= \frac{m - \left(\mu + c(\nu,\tau) + \sigma\sqrt{w}\sinh\omega\right)}{c\sigma} , \\ r(m|\mu,\sigma,\nu,\tau) &= -\nu + \frac{\sinh^{-1}z(m|\mu,\sigma,\nu,\tau)}{\tau} , \end{split}$$

where m is the observable, the Johnson S_U function is expressed as follows:

$$J(m|\mu,\sigma,\nu,\tau) \propto \frac{1}{2\pi c(\nu,\tau)\sigma} e^{-\frac{1}{2}r(m|\mu,\sigma,\nu,\tau)^2} \frac{1}{\tau\sqrt{z(m|\mu,\sigma,\nu,\tau)^2+1}}$$

Double-sided Hypatia:

Having defined:

$$h(m|\mu,\sigma,\lambda,\zeta,\beta) \propto \left((m-\mu)^2 + A_{\lambda}^2(\zeta)\sigma^2 \right)^{\frac{1}{2}\lambda - \frac{1}{4}} e^{\beta(m-\mu)} K_{\lambda - \frac{1}{2}} \left(\zeta \sqrt{1 + \left(\frac{m-\mu}{A_{\lambda}(\zeta)\sigma}\right)^2} \right) ,$$

where m is the observable and $(\mu, \sigma, \lambda, \zeta, \beta)$ denotes the set of parameters. Knowing that the first derivative with respect to m is given as h', the double-sided Hypatia function H is expressed as follows:

$$\begin{split} H(m|\mu,\sigma,\lambda,\zeta,\beta,a_1,n_1,a_2,n_2) \propto \\ & \begin{cases} h(m|\mu,\sigma,\lambda,\zeta,\beta), & \text{if } \frac{m-\mu}{\sigma} > -a_1 \text{ or } \frac{m-\mu}{\sigma} < a_2 \ ,\\ \frac{h(m|\mu-a_1\sigma,\mu,\sigma,\lambda,\zeta,\beta)}{\left(1-m/\left(n\frac{h(m|\mu-a_1\sigma,\mu,\sigma,\lambda,\zeta,\beta)}{h'(m|\mu-a_2\sigma,\mu,\sigma,\lambda,\zeta,\beta)} - a_1\sigma\right)\right)^{n_1}, & \text{if } \frac{m-\mu}{\sigma} \leq -a_1 \ ,\\ \frac{h(m|\mu-a_2\sigma,\mu,\sigma,\lambda,\zeta,\beta)}{\left(1-m/\left(n\frac{h(m|\mu-a_2\sigma,\mu,\sigma,\lambda,\zeta,\beta)}{h'(m|\mu-a_2\sigma,\mu,\sigma,\lambda,\zeta,\beta)} - a_2\sigma\right)\right)^{n_2}, & \text{if } \frac{m-\mu}{\sigma} \geq a_2 \ . \end{split}$$

The K_{λ} functions are special Bessel functions of third kind, whereas A_{λ} is defined as:

$$A_{\lambda}^2 = \frac{\zeta K_{\lambda}(\zeta)}{K_{\lambda+1}(\zeta)}$$

HORNSdini and HILLdini:

The HORNSdini and HILLdini PDFs are defined as

$$\begin{split} \operatorname{RooHORNSdini}(\mu|a, b, \xi, \sigma, f_g, R_g) &= \\ & \int_a^b \left(x - \frac{a+b}{2} \right)^2 D(x|\mu, \sigma, f_g, R_\sigma) \left(\frac{1-\xi}{b-a} x + \frac{b\xi-a}{b-a} \right) dx \ , \\ \operatorname{RooHILLdini}(\mu|a, b, \xi, \sigma, f_g, R_g) &= \\ & \int_a^b -(x-a)(x-b) D(x|\mu, \sigma, f_g, R_\sigma) \left(\frac{1-\xi}{b-a} x + \frac{b\xi-a}{b-a} \right) dx \ , \end{split}$$

where $D(x|\mu, \sigma, f_g, R_\sigma)$ is a double Gaussian function defined as

$$D(x|\mu,\sigma,f_g,R_\sigma) = G(x|\mu,\sigma) + f_g G(x|\mu,R_\sigma\sigma) .$$

