

XXIX Cracow EPIPHANY Conference

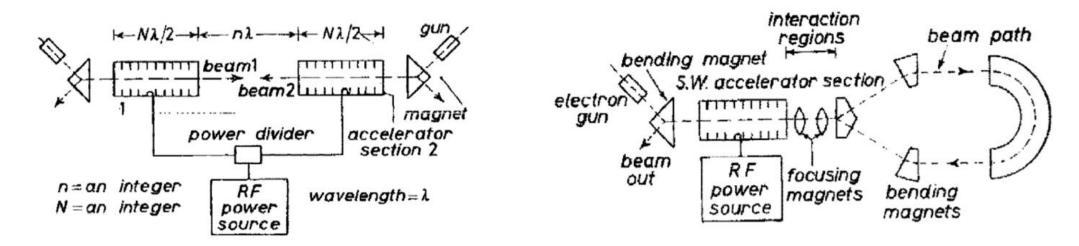
on Physics at the Electron-Ion Collider and Future Facilities

16-19 January 2023

PERLE: The development of a multi-turn, high current ERL

Achille Stocchi
IJCLab / Université Paris-Saclay, IN2P3/CNRS

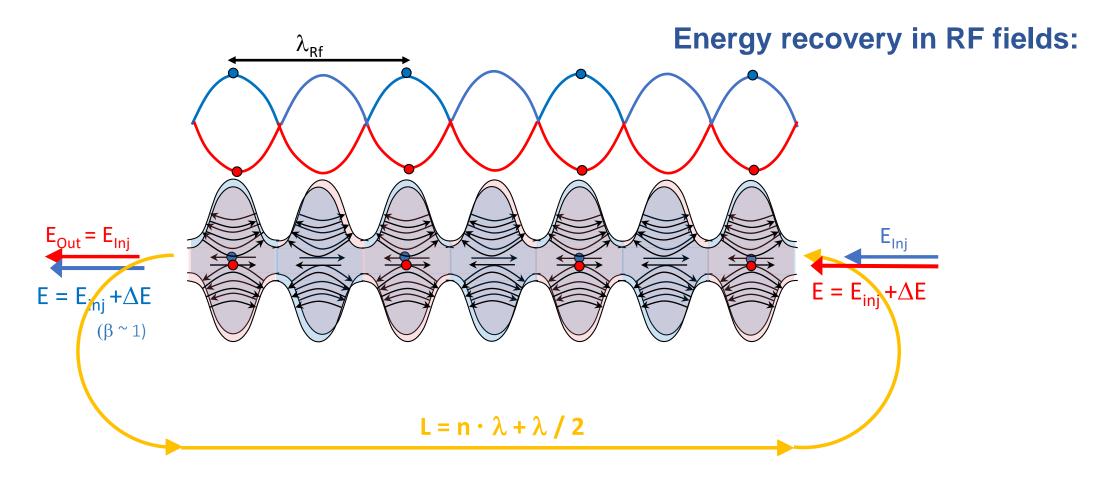
on behalf of PERLE Collaboration


- Introduction.
 - The ERL concept
 - How an ERL works. Why an ERL today

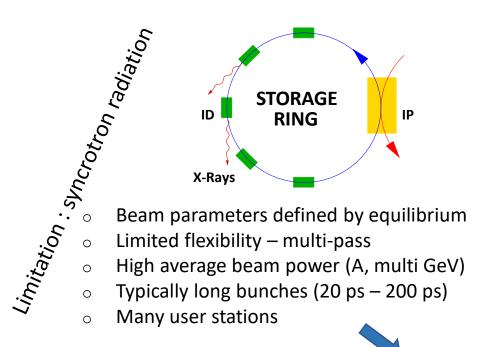
5' to introduce the subject!

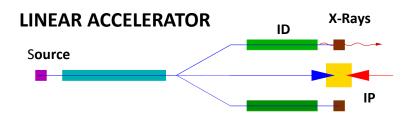
Jorgen D'Hondt has already explained the ERL concept

ERL. The original Idea.


ERL concept was proposed first in 1965 by Maury Tigner ¹

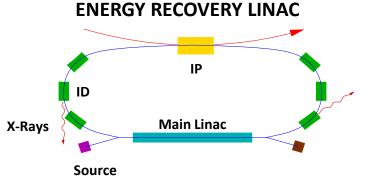
¹ M. Tigner: "A Possible Apparatus for Electron Clashing-Beam Experiments", Il Nuovo Cimento Series 10, Vol. 37, issue 3, pp 1228-1231,1 Giugno 1965


- First test was done at Stanford in 1986 (interesting concept for FELs, Compton light sources and high current electron cooler)
- Concept become only viable with recent advances in SRF technology.


ERL how it works

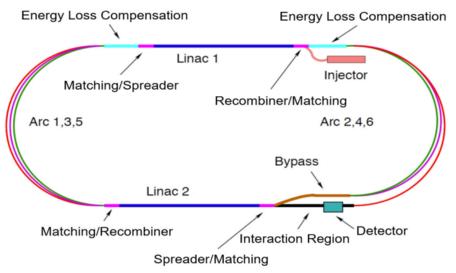
- Energy supply → acceleration
- Deceleration = "loss free" energy storage (in the beam) → Energy recovery

ERL WHY?: The Best of Two Worlds



- Beam parameters defined by the source
- High flexibility single pass
- Limited average beam power (<< mA)
- Possible short bunches (sub psec)
- Low number of user stations

- Linac-like beam quality
- Easy to upgrade (add linac section or recirculation passes)
- Tolerate more "damage" to the beam from collisions with another beam (the beam is dumped soon after)

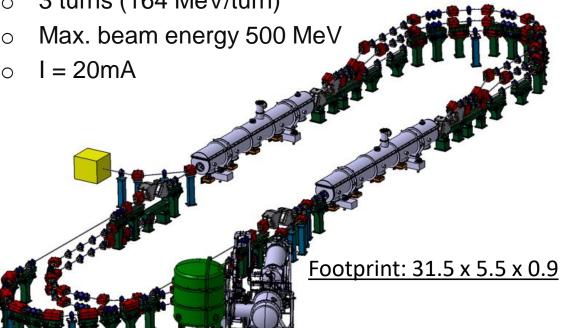


- High beam current possible (RF power limit removed)
- Reduced power bill (RF power recovered)
- Reduced cost of RF amplifiers (smaller RF power amplifiers)
- Reduced beam power and energy in beam dump (less shielding / activation issues)

High average beam power in compact machine, excellent beam parameters with high flexibility

The short story of the PERLE Genesis

- Future particle physics imposes strong challenges on accelerators and requires a variety of accelerator R&D programs not only to meet the foreseen performances, but also to lower their energetic consumption and enhance their efficiency.
 - → Energy Recovery Linacs offer one of the main options for energy frontier colliders
- To probe **deep inelastic scattering at high energy** and to study the **Higgs boson**, LHeC proposes a high luminosity collider using the HL-LHC protons and an intense electron beam.
- For the electron beam, the ERL scenario has many advantages :
 - High luminosity, low interference for installation next to LHC, machine size, energy consumption
 - Concept also applied to the FCC-eh design
- The ERL-ring collider concept of LHeC based on
 - synchronous operation of HL-LHC and 50 GeV electron beams
 - circumference of e- loop about 1/5 of that of LHC (5.3 km)
 - luminosity of 10³⁴ cm⁻².s⁻¹
 - → Multi-turn ERL (3+3 passes), 50 GeV, RF frequency: 801 MHz, 20 mA beam current (6 x 20 = 120mA load in the cavities).


The short story of the PERLE Genesis

PERLE: A testbed to explore and validate a broad range of accelerator phenomena & technical choices on the pathway to the LHeC and other new frontier machines realisation.

Main challenges: Multi-turn, high bunch charge, high power energy recovery, ...

2 Linacs (Four 5-Cell 801.58 MHz SC cavities)

3 turns (164 MeV/turn)

Target Parameter	Unit	Value
Injection energy	MeV	7
Electron beam energy	MeV	500
Normalised Emittance $\gamma\epsilon_{x,y}$	mm mrad	6
Average beam current	mA	20
Bunch charge	рС	500
Bunch length	mm	3
Bunch spacing	ns	25
RF frequency	MHz	801.58
Duty factor		CW

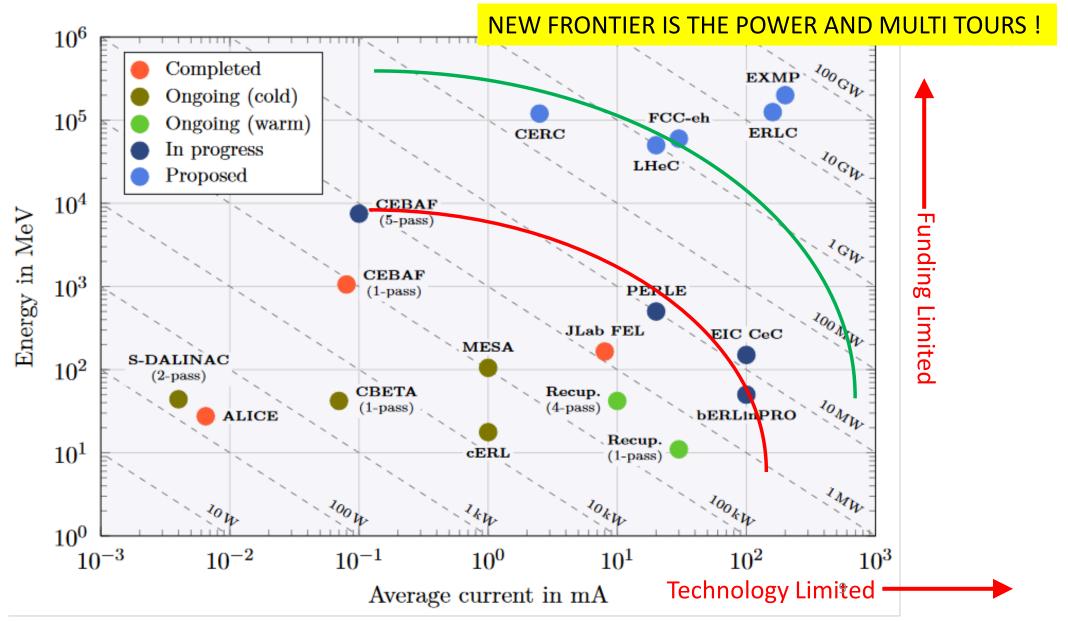
The future projects with ERL. The project PERLE@Orsay

The development of ERLs has been recognized as one of the five main pillars of accelerators R&D in support of the European Strategy for Particle Physics (ESPP).

ERL Panel formed, see slides of Jorgen D'Hondt

ESPP R&D Accelerator RoadMap https://arxiv.org/ftp/arxiv/papers/2201/2201.07895.pdf

Three main actions to succeed the ESPP Accelerator Roadmap as far as the ERL is concerned

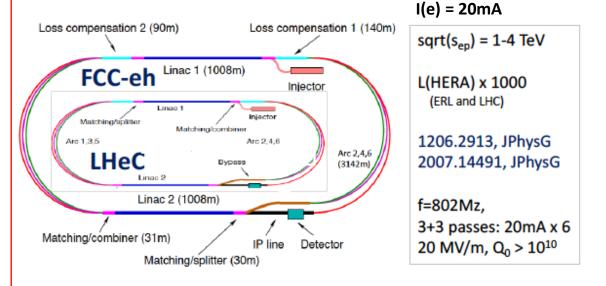

- The Realisation of PERLE Multi-turn ERL (3+3 passes) 20 mA beam current
- Upgrade bERLinPRO toward the First ERL Facility to operate 100mA in single turn with FRT control
- Key Technology R&D Program next generation ERLs

ERL machines « should allow » to reach

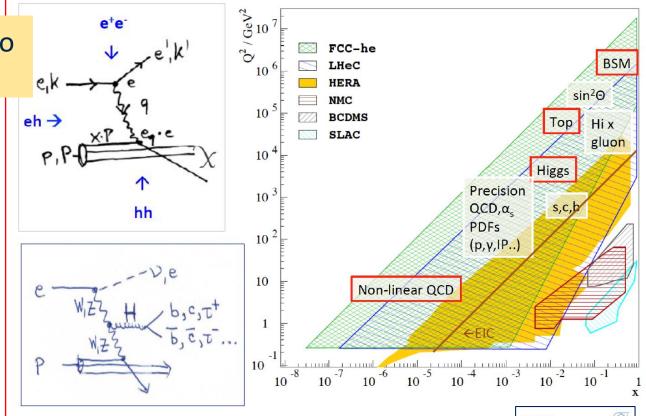
- high currents → high luminosity
- high energies and stay compact

Provided we can implement multi-turn, high power = high current x energy ERL machine

Many projects in the world: demonstrators, small machines, future projects...



DIS (Deep Inelastic Scattering) ep Physics at High Energy in the next decades


Electrons
for the LHC
Literacch and Park
Workshop
October 26-28-28-202
UCab-Orasy, France

Energy frontier DIS at HEP is necessary to explore SM and beyond

LHeC and **FCC-eh** are partners of LHC and FCC.

Same parameters as the ones for PERLE@Orsay

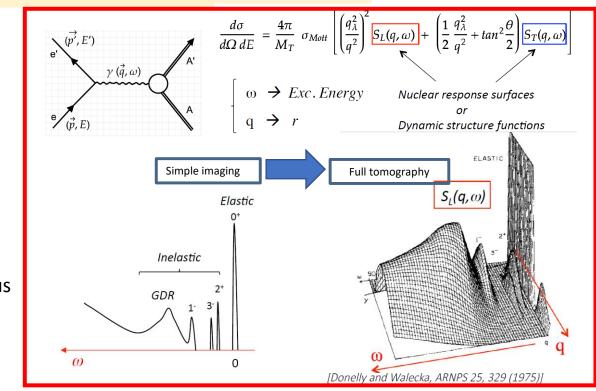
- Cleanest High Resolution Microscope: QCD Discovery
- Empowering the LHC/FCC Search Programme
- Transformation of LHC/FCChh into high precision Higgs facility
- Discovery (top, H, heavy v's..) Beyond the Standard Model
- A Unique Nuclear Physics Facility

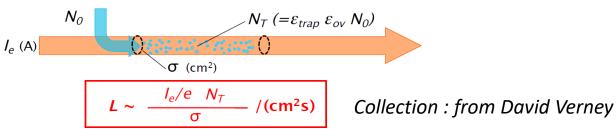
Collection : from Max Klein

Published in 2020

LHO

The New Frontier: e-RIB (Radioactive Nuclei Beam)scattering!


A completely new horizon, explore the interior of exotic nuclei : charge radius, shape... New properties are emerging (halo, pairing..)!


- all interesting phenomena occur at $q \gtrsim 2 \, \mathrm{fm^{\text{-}1}}$; the higher the q transferred the lower the cross section; consider previous achievements in this domain
 - \rightarrow compromise starting at $E_e=250$ $\rightarrow \simeq 500$ MeV (~0.5fm)
- aimed luminosity should be 10²⁹ cm⁻²s⁻¹ but much can be already done at
 - $\rightarrow \mathcal{L} \simeq 10^{27} \, ^- 10^{28}$ (with unstable nuclei EVERYTHING is new !)

A long road ahead before reaching the full tomography of an exotic nucleus The starting point is :

DESTIN [**DE**ep **ST**ructure Investigation of (exotic) **N**uclei]

Very chanellenging
The beam will confine RIB in longitudinal plane ewith positive ions), and traps have to confined RIB
in transversal plane (à la SCRIT at RIKEN)

PERLE a key ERL project: <u>HEP and Nuclear Physics</u> communities

ERL machines open a new Frontier for the physics of "the electromagnetic probe"

```
(1) At low energy e Nuclei (PERLE and Destin@Orsay) 250-500 MeV
```

(2) At Higher Energy e p (e A) (LHeC and/or FCC-eh) 60 GeV

```
You need high luminosity → High current (from 10mA up to 100mA)
```

You need to increase the energy (remaining compact) \rightarrow Multi turns

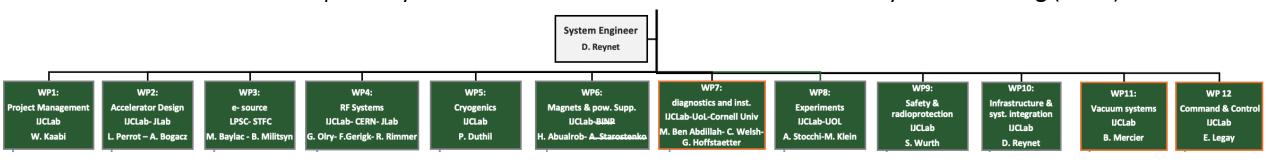
The (1) machine (PERLE@Orsay)

- > will be the first ERL dedicated to Nuclear Physics for studying the eN interaction with radioactive nuclei.
- ➢ It's a necessary demonstrator for the (2) -HEP machine (LHeC / FCC-eh)- (same technological choices & beam parameters)

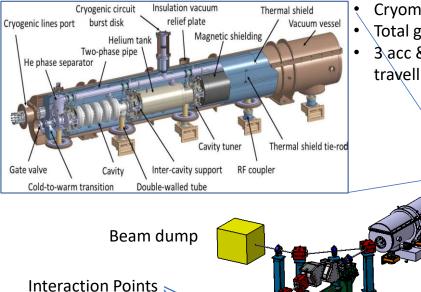
The key points: high power (current x energy) and complex machine in terms of beam dynamics (multi-turns)

- + PERLE@Orsay (not time today to discuss it)
- is also a necessary demonstrator for other future machines and applications
- Elastic ep Scattering at PERLE (p Radius, Dark Photons, PV)
- Possibility of Nuclear Photonics (inverse Compton scattering y's)

PERLE@Orsay is an international collaboration

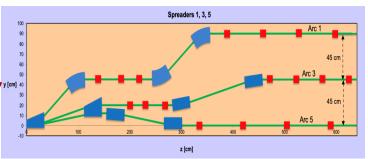


~60 people involved sofar (and 5 PHD running thesis).


Spokesperson: Max Klein (Liverpool)
Project leader: Walid Kaabi (IJCLab)

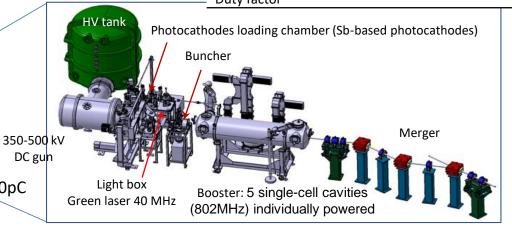
CB composed by the PI of the different laboratoires and chaired by Oliver Bruning (CERN)

PERLE Configuration


PERLE: first multi-turn ERL, based in SRF technology, designed to operate at 10MW (20 mA, 500 MeV) power regime

Cryomodule with 4 five-Cell cavities

Total gradient 82 MeV


3 acc & 3 decc beams at different engine travelling in the CM.

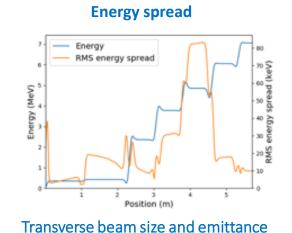
Switchyard: vertical separation/recombination of beams at different energies

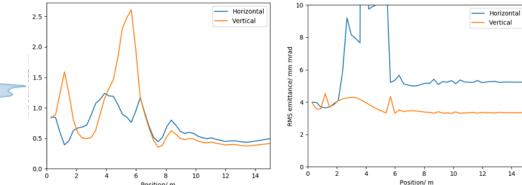
> 3 staked recirculation arcs for beams at different energies (Arcs 1, 3, 5).

Target Parameter	Unit	Value
Injection energy	MeV	7
Electron beam energy	MeV	500
Normalised Emittance $\gamma \epsilon_{x,y}$	mm mrad	6
Average beam current	mA	20
Bunch charge	рС	500
Bunch length	mm	3
Bunch spacing	ns	25
RF frequency	MHz	801.58
Duty factor		CW

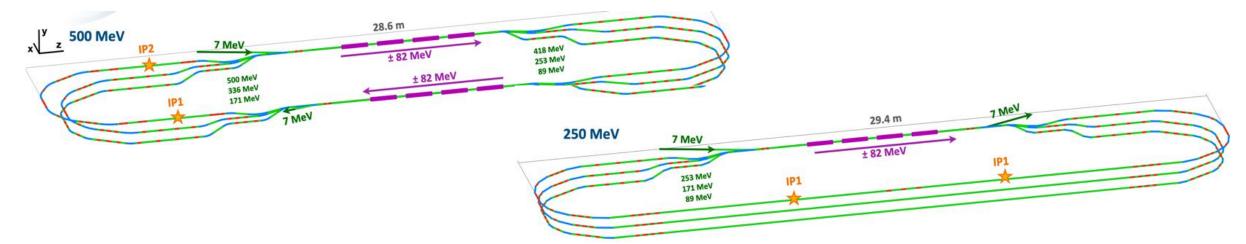
3 staked (& inversed) recirculation arcs for beams at different energies (Arcs 2, 4, 6)

bunches at 7 MeV.


Injection line delivering 500pC

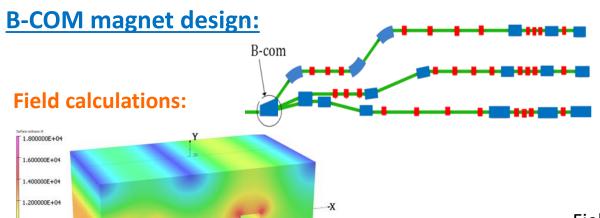

Injection line optimisation

Electron source to booster exist optimisation:


- The ALICE electron gun electrode geometry has been re-optimised for PERLE's new requirements.
- Optimisation with a 4 cavity booster, from the cathode to the booster exit, was performed and meets the specification:

	Achieved values	Specification	
Horizontal emittance	5.23 mm mrad	< 6 mm mrad	
Vertical emittance	3.34 mm mrad	< 6 mm mrad	
Bunch length	3.22	3 mm	
Kinetic energy	86.1 MeV	88.6 MeV	
Horizontal beta function	7.89 (mismatch 8.3 %)	8.6	
Horizontal alpha function	-0.74 (mismatch 11.6 %)	-0.66	
Vertical beta function	8.76 (mismatch 1.8 %)	8.6	
Vertical alpha function	-0.67 (mismatch 1.5 %)	-0.66	

Lattice optimization of the 250 MeV version of PERLE


Lattice design of the 250 MeV version of PERLE

- compatible with the upgrade to 500 MeV version (the same elements used, only about 30 meters of extra beam pipes)
- reduced immediate expenses (second cryo-module and 18 dipoles can be purchased later)
- demonstration of ERL with 6 paths at high current (same as in 500 MeV version, but with half of the power)
- more space for experimental areas
- additional expenses / manpower / shutdown time (rebuilding / recommissioning for the full power machine)

Filling pattern (Arc optics architecture)

- the optimal filling pattern for 500 MeV version requires extra space (28.6 m → 30.6 m)
 but current configuration is fine (Alex Bogacz, Peter Williams, Robert Apsimon)
- for the 250 MeV version we consider the optimal filling (more essential at lower energies, inline with the optics)

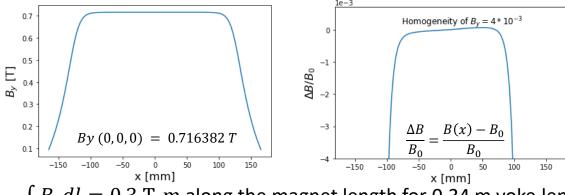
Status of B-com Magnet design

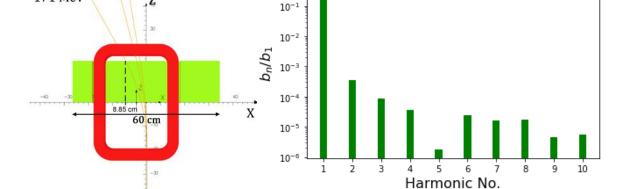
Harmonics content calculated along beam trajectory:

Energy (MeV)	<i>b</i> ₁ (G)	<i>b</i> ₂ (G)	b ₃ (G)	b ₄ (G)	<i>b</i> ₅ (G)	$\sqrt{\sum\limits_{n=1}^{5}b_n^2}/b_1$
171	-2.897×10^{5}	-1.005×10^2	25.48	-10.19	5.194×10^{-1}	-3.5949×10^{-4}
336	-2.807×10^{5}	19.62	9.217×10^{-1}	4.623	8.187×10^{-1}	-7.1943×10^{-5}
500	-2.791×10^5	34.82	3.534	-9.722	-6.311×10^{-1}	-1.3018×10^{-4}

o Field homogeneity along the beam path: 0.036%

500 MeV


- → Quadrupole & sextupole components can be dealt within the lattice.
- Initial design: 0.1% field quality


171 MeV

→ Improvement by one order of magnitude

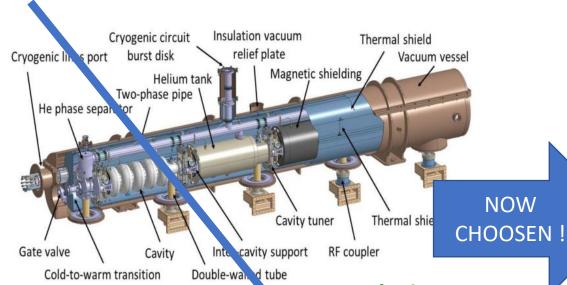
336 MeV

No chamfer or shims added, only a blend radius of 8 mm is used

 $\int B \, dl = 0.3 \, \text{T.} \, \text{m}$ along the magnet length for 0.34 m yoke length

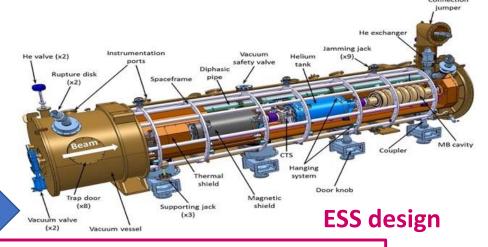
 \rightarrow B = 0.88 T

Energy = 171 MeV

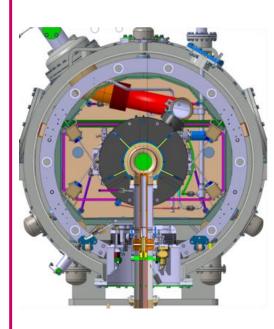

1.000000E+04

8.000000E+03 6.000000E+03

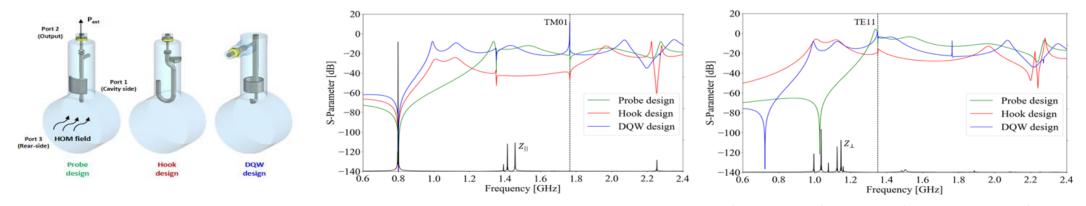
4.000000E+03


0.000000E+03

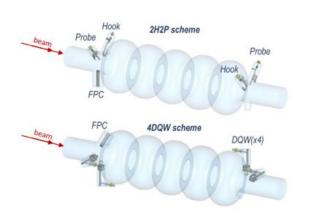
Cryomodule design

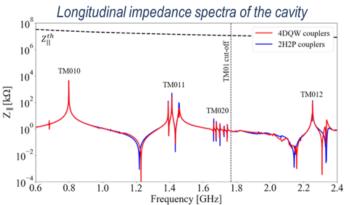


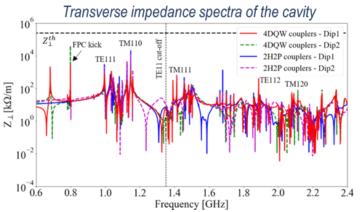
- Vacuum vessel with top cover
- Insertion of the assembled cavity string by the top
- Cavity string upported by couplers
- Connexion to valve box at the extremity of the vacuum vessel
- Vacuum vessel fabricated (top cover to be modified)
- Compact design >> lack of space



- Intermediate supporting structure (spaceframe)
- Cavity string hung by rods
- Insertion of the cavity string by the extremity (rollers)
- Trap doors for tuner access
- Connexion to the valve box on the top of the vacuum vessel
- More available space inside (+ 400mm in diameter and more transversal space between cavities)
- Design validated: series fab. & tests ongoing (Qty 30)


Status of HOM design Studies:


HOM coupler optimization of 3 different designs



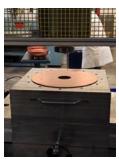
- Couplers geometrically optimized according to the HOM spectrum & S-parameters btw port 1 (beam pipe) & port 2 (coupler output) studied.
- The hook coupler provides higher damping of the first two dipole passbands (TE111 and TM110)
- The DQW coupler exhibits a better monopole coupling for TM010 mode than the probe design.

Study of 2 damping schemes with 4 HOM couplers (Especially for dipole HOM extraction)

Promising results of DQW configuration: It allow damping both monopole and dipole HOMs below the analytically-computed beam-stability limits

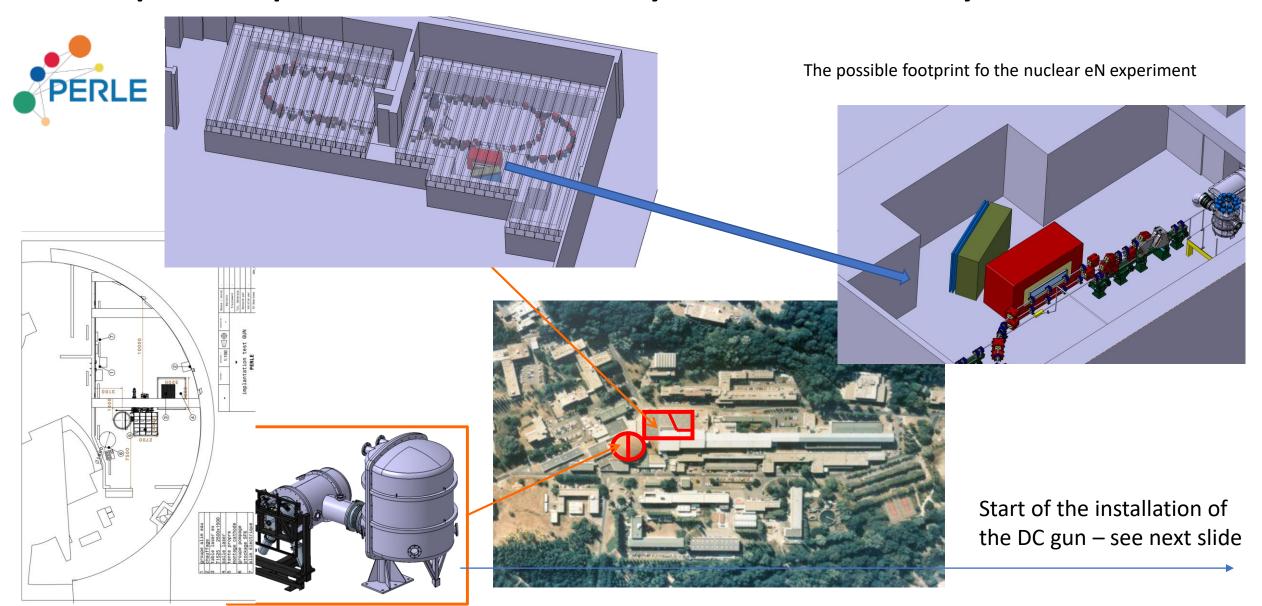
Plans on HOMs and cavity activities:

- Hook type HOM coupler was fabricated at CERN by 3D printing (polymer + Cu coating).
- o 2 other HOM coupler types (probe and DQW) are fabricated at CERN (same technique). Copper coating will follow soon.



Next steps:

HOM measurements on monocell then 5-Cell Cu cavity will be performed at Jlab (Feb/March 23). Cavities Fabrication/modifications done by JLAB.

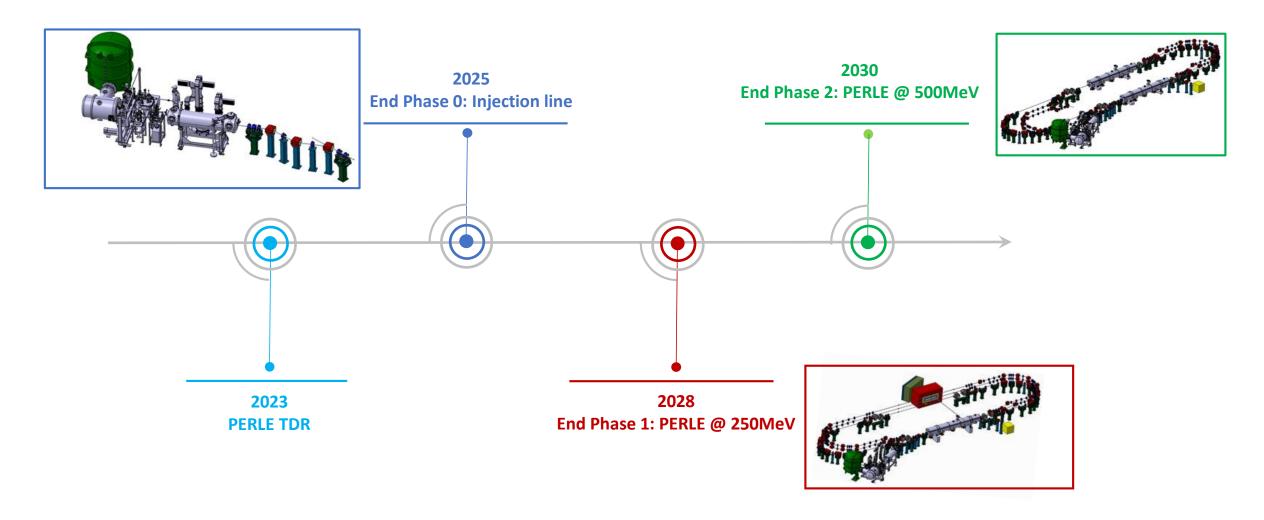


■ 3D metal printing for the DQW coupler: under study with CERN. HOM couplers to be used with the 5-cell Cu cavity prototype in Feb/March 2023.

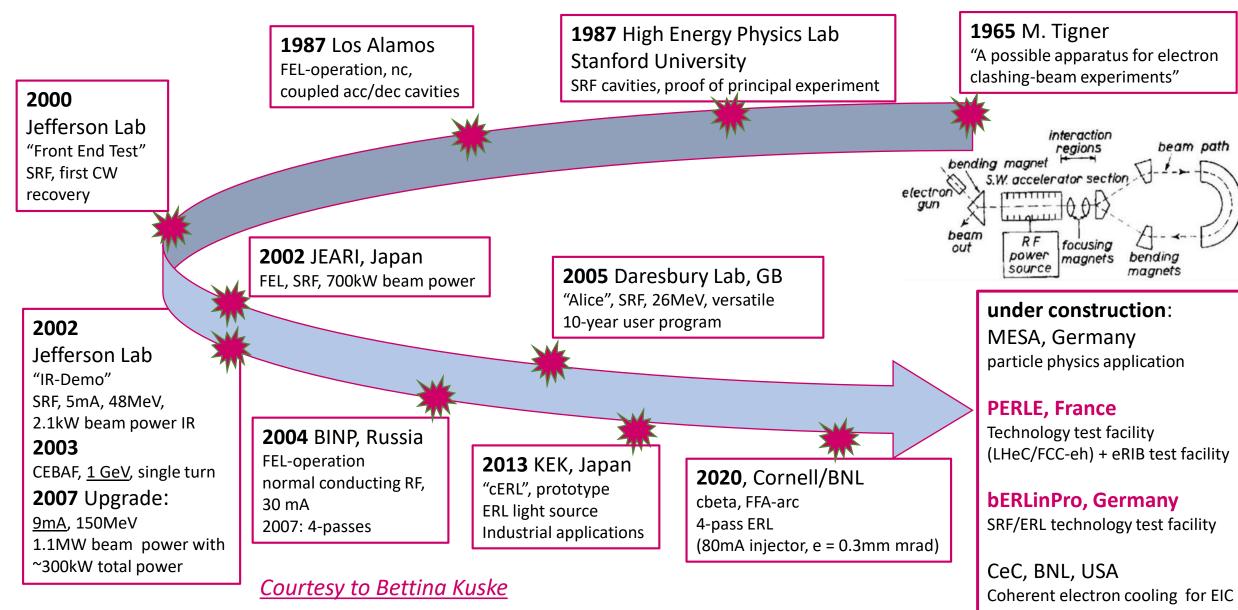
Proposed implantation @ IJCLab-Orsay. Infrastructure study work started

Photogun (ALICE)—Installation started in 2022!

- Assembly and integration of the photogun started
 - Installation of the high voltage tank, leak test
 - Assembly of the HV columns, tests and modifications to the HV alim performed
 - Pre-positioning of the gun
 - Anode chamber cleaned, under test



Planning



Conclusions

- ❖ ERL machines open a new frontier for the physics of "the electromagnetic probe" (ep, eA, eN).
 PERLE@Orsay is a key ERL project for HEP and Nuclear Physics communities
- ❖ PERLE@Orsay has been recognised (together with bERLinPro) as essential pillars of the ERL ESPP strategy. It combines high current and multi-passes (high luminosity / higher energy)
- ❖ PERLE@Orsay is a very challenging machine: RF CW operation, specific SFR systems, multi-bunches operation, high power machine, complex Lattice design, broad range diagnostics, beam dynamics...
- ❖ The International collaboration is formed and still open (recently An-Najah and ESS-Bilbao) to new comers.
- Important boost in the last 9 months and we are actively entering in the TDR and the Praparatory Building Phase!

BACKUP

ERL History and achievements

