The Heavy Photon Search experiment at Jefferson Lab

Pierfrancesco Butti, SLAC, on behalf of the HPS collaboration

19/01/2023

Thermal Dark Matter

- Thermal Dark Matter (DM) originating as a relic of the hot early Universe is one of the most compelling paradigms.
- Generic: only non-gravitational interaction between DM and Standard Model (SM)
- **Predictive:** minimum annihilation rate $< \sigma v > \approx 10^{-26} cm^3 s^{-1}$

$$10^{-22} eV \qquad \qquad m_{plank} \sim 10^{19} GeV$$

Light Thermal Dark Matter - Hidden sector

- Freeze-out scenario with Light Dark Matter (LDM) requires new light mediator to provide the correct relic abundance
- Dark Matter can belong to a "hidden sector" secluded from the Standard Model (SM)
- Mutual interaction mediated by a massive gauge boson

- **Benchmark:** additional spin-one gauge boson *"dark photon"* A', neutral under SM, hidden $U(1)_D$ symmetry
- Kinetically mixing with SM $U(1)_{\gamma}$, (ϵ)

Possible dark photon signatures

Visible Decay - Parameter space

Bump Hunt search

- Searches are "Bump hunts" for m(l⁺l⁻) resonances
- Excess of **prompt** A' signal above continuous falling background
- The required large signal yield limits these types of searches to "large" ϵ^2 couplings

Beam dump

E137 SLAC Beam Dump

SLAC

7

A' Mass (GeV)

Displaced vertex search

- Fixed target experiments search for a displaced vertex formed by the A' decay products.
- Sensitive to shorter decay lengths with respect to beam dump experiments
- Covered mass range depends on detector design and acceptance

Visible Decay - Fixed Target Experiment

- Dark Photons can be **produced via Dark bremsstrahlung** from beam electrons on a thin target
- A' production is sharply peaked at $E_{A'} = E_{beam}$ and emitted in the very forward direction
- Soft recoil electrons at large angles. A's decay into a l^-l^+ pair, with opening angle $m_{A'}/E_{beam}$ (~ few degrees)

- An experiment targeting this scenario must have:
 - Very forward acceptance to capture A' decay products close to beam plane
 - Calorimeter for fast trigger and precise timing information to reject elastically scattered electrons
 - Precise tracking system to identify particles consistent with a decay-vertex origin.

CEBAF and the HPS detector

CEBAF Accelerator at Jefferson Lab

SLAC

- Superconducting RF recirculating linear accelerator
 - 1400m length
 - High intensity continuous electron beam (500 or 250 MHz)
- Data runs performed at Jefferson Lab Hall B
 - Beam bunch every 2ns
 - Beam current up to 500 nA
 - Beam Energies: 1.06 GeV for 2015 / 2.3 GeV for 2016

2015 Engineering Run 50 nA @ 1.06 GeV 1.7 days (10 mC) of physics data

The HPS Detector

Linear Shift Motion System Adjustment of Silicon Tracker opening Silicon Vertex Tracker (SVT) Split in 2 separated volumes to avoid intense flux of scattered beam electrons Electromagnetic Calorimeter Triggering and ParticleID

2016 Engineering Run Bump Hunt and Displaced Vertex Analyses

EPJ Web of Conferences 142, 01011 (2017) Advances in Dark Matter and Particle Physics

<u>×</u>10³

200

180

160

140

120

100

80

60

"Radiative

 e^+

mize both the invaria directly affect the ex

ve area 🖸

k and h ve larg

am of

re and E

5 chip

nced Ti nology ^E

'∉īs m

13.3x1

Backgrounds

- Wide Angle Bremsstrahlung (WAB) events are due to photon conversions in the detector material
 - Low acceptance but huge cross-section
 - Removed by track parameters cuts and request of hits-ontrack in the innermost layers

b)

- Accidentals events due to random combinations of e^+ with beam electrons
- Suppressed by precise ECAL timing cuts and topological cuts used to remove elastically scattered beam electrons.

Z

Event Selection Summary

- Data and Monte Carlo in broad agreement: evidence that sample composition is understood
- Residual discrepancies due to trigger modeling in simulation and resolution effects

Resonance Search - Radiative fraction

The A' kinematics is identical to off-shell

•

SLAC

SM photon production Cross section for heavy photons at — rad — wab 10⁴ — tritrig+wab mass $m_{A'}$ is related to virtual photon of same mass by 10³ $\sigma_{A'} = \frac{3\pi m_{A'} \epsilon^2}{2N_{eff} \alpha} \frac{d\sigma_{\gamma^*}}{dm}$ With $N_{eff} = 1$ for mA' 10² PRD 80 075018 0.08 Therefore the number of A' events: • 0.06 frad 0.04 $N_{A'} = \frac{3\pi m_{A'} \epsilon^2}{2\alpha} f_{rad} \frac{dN_{bkg}}{dm_{reco}}$ 0.02 0.00 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 M(ee+) [GeV]

Background = tridents + WABS + beam scatters

Resonance Search - Radiative fraction

Mass calibration and resolution - Møllers

-SLAC

Resonance Search - Bump Hunt

The search procedure is 10⁵ performed at a fixed A' mass 10⁴ hypothesis and is repeated over dN/dm [1 / 0.5 MeV] the a $m(e^+e^-)$ mass range 10^{3} Sensitivity depends on the "local" 10² mass resolution σ_m : - Guide the choice of the window 10 size in the spectrum scan - Construct a signal shape for the statistical fit 0.05 0.1 0.15 0.2 0.25 0.3 Ω M(e⁺e⁻) [GeV] Range of bump hunt search 0.008 م ق ل ا ا ا ا ا ا ا ا ا C Moeller: Data Moeller: MC non-smeared A' mass smeared 0.006 Moeller: MC smeared From FEE and Møllers • 0.005 A' mass smeared Computed for various $m_{A'}$ and • 0.004 HPS 2016 interpolated 0.003 0.002 arXiv:2212.10629 0.001 0 22 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 M(ee) [GeV]

Resonance search - Results

- The analysis of the 2016 dataset has been completed
 - No signal observed
 - Upper Limit $\epsilon^2 = 4 \times 10^{-6} @ m_{A'} = 75 \text{ MeV}$
 - Results in agreement with other experiments

Systematic	Impact on	%	Estimated from
MC Phase space	f_{rad}	0.5-2	accidental side bands
MC process σ	f_{rad}	6.5	Madgraph
Target Position	σ_m	2.5	MC Simulation
Momentum smearing	σ_m	1.5	fit parameters variations

Displaced Vert

- Targeting small ϵ^2 by searching for A' that decay farther downstream wrt target (1-10cm)
- Two categories to maximize signal acceptance: L1L1 and L1L2

- Background largely dominated by prompt decay vertex reconstruction resolution, scattering, tracking errors
- Tracking requirements driven by the signal topology are employed to reduce background and are successful in reducing the high-z tail

Displaced Vertex Search - Signal Region

- Analysis structured to define a signal region with "no-background"
- Reconstructed vertex z location vs $m(e^+e^-)$ distribution is sliced in overlapping bins

Displaced Vertex Search - Signal Region

—SLA(

 $z_{cut} \sim 0.5$ events for 2016

sults

- Used Optimum Interval Method (OIM) to set an upper limit on e^2 from expected rate
- Common procedure employed when the source of background is unknown

2019 and 2021 Data Run

The 2019 and 2021 datasets

- HPS took 2 additional data runs in 2019 and 2021:
 - 2019: $E_{beam} = 4.55 \ GeV @ 100nA$
 - for a $L_{int} = 128 \text{ pb}^{-1}$
 - 2021:
 - $-E_{beam} = 3.74 \text{ GeV} @ 168 \text{ pb}^{-1}$
 - $E_{beam} = 1.94 {\rm GeV}$ for Møllers
- Upgrades done to improve sensitivity to long lived dark photons:
 - First layers of the SVT moved closer to the beam plane: increase acceptance to low mass dark photons
 - Additional thin layer to the SVT: improved vertex resolution and reconstruction efficiency
 - Implemented positron only trigger using a hodoscope: allow recover of sensitivity due to ECAL hole

z-Location [mm]	Axial	Stereo
Top Ly0	38.15	45.97
Top Ly1	88.15	95.97
Bottom Ly0	61.85	54.03
Bottom Ly1	111.85	104.03

Detector performance - Vertexing

 Preliminary studies show that HPS reconstruction is able to achieve simulated design performance

Future prospects

SLAC

 New reach estimates for analysis using full detector simulation show clear reach in the thermal relic target band in the parameter space

Sensitivity to Strongly Interacting Massive Particles

Strongly Interacting Massive Particles (SIMPs)

- Assume QCD-like strongly-coupled hidden sector (HS) neutral under SM forces
- HS contains dark pions (π_D) and heavier dark vector mesons (V_d) analogous to SM
- Visible 2-body and 3-body decays expected arXiv:1402.5143
- Model can predict thermal relic abundance

Fixed target experiments well suited to detect long-lived V_D resonant decay to two leptons

Strongly interacting Dark Matter

• HPS performed SIMP reach estimates for the 2016 run (red) and combined runs 2016-2021 (Blue)

- Mass ratios are fixed to $m_{A'}/m_{\pi}=3,~m_V/m_{\pi}=1.8$ and α_D =0.01
- Assume only 2-body decays are visible (conservative)
- Two benchmark cases minimum and maximum $BR(A' \rightarrow \pi_D V_D)$
- HPS has unique sensitivity to thermal targets for both benchmarks

Conclusions

- Thermal relic dark matter in the sub-GeV range is motivating a worldwide search program for dark photons
- HPS experiment has been designed to search for dark photons with masses and couplings of particular interest for thermal relic dark matter.
- HPS successfully took and completed the analysis of 2 engineering runs (2015 and 2016), refining analysis techniques. No signal observed so far. Results submitted to PRD.
- Bump-hunt search confirmed 2015 exclusion, first displaced vertex analysis.
- HPS also has sensitivity to other dark sector scenarios, such as SIMPs, beginning with the 2016 dataset
- 2019 and 2021 datasets are currently being calibrated and analyzed and are expected to provide significant reach in the thermal relic band in of the (m_A', ε) parameter space

Backup

ECAL Performance plots

- HPS is a high-rate experiment (1MHz/ crystal)
 - Time calibration is a key element for efficient removal of accidentals
- RF and cluster-wise time walk corrections
 - Resolution better than 4ns intrinsic FADC sampling period

- Energy calibration extracted from FEEs and wide angle bremsstrahlung events
- Correction of edge effects

arXiv:1610.043919

SVT Performance - Momentum Scale and Resolution

- Elastically beam scattered electrons are used to align the SVT with momentum scale constraint
- New techniques reach better Data/MC agreement in momentum distribution with respect previous analysis

Alignment performance - Unbiased Residuals

• Initial misalignments up to 200um recovered by current alignment procedure across all detector

- Residual misalignment from first calibration pass ~ 10um, work in progress
- Angular kinks as expected from MC ideal simulation

2019 Data Run - Reconstruction Upgrades

Track reconstruction upgrades

- The 2019 dataset is about 10x the integrated luminosity with respect to the 2016 dataset
- Track reconstruction time takes 60% of event reconstruction time
 - The thicker target 20µm will lead to even higher processing time
- Single side dead sensors or single side hitinefficiency cause the loss of the full hit
 - In 2019 Ly 5 bottom axial sensor in positron bending side defective
- Current tracking doesn't provide any metric to reduce hit-on-track mis-association
 - Complicated background of vertex analysis that needed ad-hoc post-track fit topological cuts

Tracking Upgrade - Legacy Track Reconstruction

New Tracking - Computing Time

New Tracking - MC Simulation Distributions

- $N_{matched}^{recoTrack}$ are the tracks required to have TrackP > 0.8
- The efficiency to find "high-quality" tracks is up to >85% (>95%) for e⁻ (e⁺) across the physics range. Legacy tracking ranges between 70-75% (~85%) for e⁻ (e⁺).
- Drop close to beam energy for e⁻ due to large fraction of generated beam scattered electrons hardly reconstructable at high-purity

New Tracking - MC Simulation Track Efficiency

- $N^{fakeTrack}$ are the tracks with TrackP < 0.8
- Dip at 4.5 GeV for e^- due to large amount of elastically reconstructed electrons.
- Low momenta tracks have very poor quality and likely to be fake
- Fake rate ~30% (>10%) for e⁻ (e⁺) across momentum spectrum for legacy tracking, <2% for new tracking

New Tracking - MC Simulation Track Efficiency

- $N_{matched}^{recoTrack}$ are the tracks required to have TrackP > 0.8
- The A' daughters are produced at very small angles from the beam plane.
- New tracking algorithms show much better high-quality reconstruction in physics region of interest

New Tracking - MC Simulation Fake Rate

-SLAC

- N^{fakeTrack} are the tracks with TrackP < 0.8
- Legacy tracker leads to several tracks with dip angle mis-reconstructed
- >30% (20%) legacy e^{-} (e^{+}) tracks have poor quality in the region of physics interest
- Fake rate is well below 2% for new tracking

Search for Dark Matter - Dark Photons

- Growing interest in the search of new forces mediated by sub-GeV scale force carrier
 - Could play essential role in DM physics
 - Complement to the search of new physics at higher ranges, e.g. LHC...

Search for Dark Matter - Dark Photons

- Growing interest in the search of new forces mediated by sub-GeV scale force carrier
 - Could play essential role in DM physics
 - Complement to the search of new physics at higher ranges, e.g. LHC...
- DM features ↔ Hidden Sector
- Heavy Photons A' canonical example of new force coupling to DM
 - New spontaneously broken "dark" U(1)' symmetry
 - Kinetic terms induced mixing to the SM photon $\rightarrow \epsilon e$ coupling to SM fermions

Search for Dark Matter - Dark Photons

- Growing interest in the search of new forces mediated by sub-GeV scale force carrier
 - Could play essential role in DM physics
 - Complement to the search of new physics at higher ranges, e.g. LHC...
- DM features ↔ Hidden Sector
- Heavy Photons A' canonical example of new force coupling to DM
 - New spontaneously broken "dark" U(1)' symmetry
 - Kinetic terms induced mixing to the SM photon $\rightarrow \epsilon e$ coupling to SM fermions

A's circumvent the "Lee-Weinberg Bound" which requires dark matter mass > 2 GeV for interactions through weak SM bosons $\langle \sigma v \rangle \propto \frac{m_{\chi}^2}{m_{\chi}^4} \Rightarrow m_{\chi} \ge 2 \text{ GeV}$ kinetic term $\mathscr{L} = \mathscr{L}_{SM} + \frac{\epsilon}{2} F^{Y}_{\mu\nu} F'_{\mu\nu} + \frac{1}{4} F^{\prime\nu\mu} F'_{\nu\mu} + m^2_{A'} A^{\prime\mu} A'_{\mu}$ PRL B166, 1986 A'mm 2 Parameter Model: Mass of A' and ε

$$\epsilon \sim \frac{eg_D}{16\pi^2} log \frac{M_\psi}{\Lambda} \sim 10^{-4} - 10^{-2}$$

If one or both U(1) in GUT, ϵ as small as ~10⁻⁷

51

• A' kinematics are identical to virtual photon production, and the cross section for heavy photons of mass m_{A'} can

be related to virtual photons of the same mass by [arxiv:0906.0580]

- $\sigma_{A'} = \frac{3\pi m_{A'}\epsilon^2}{2N_{eff}\alpha} \frac{d\sigma_{\gamma^*}}{dm_{l^+l^-}} |_{m_{l^+l^-}} = m_{A'} \quad \text{All following calculations are for mass slice } m_{A'}$
- Number of events for both processes are given by:

•
$$N_{\gamma^*} = \mathcal{L}\sigma_{\gamma^*}\epsilon_{\gamma^*}A_{\gamma^*} = \mathcal{L}\sigma_{\gamma^*}\phi_{\gamma^*}$$

- $N_{A'} = \mathcal{L}\sigma_{A'}\epsilon_{A'}A_{A'} = \mathcal{L}\sigma_{A}\phi_{A'}(\epsilon^{2})$ Combined acceptance and efficiency into one term
- Displaced decay of A' leads to an acceptance/efficiency dependence on lifetime
- Re-writing top equation in terms of number of A' events:

$$N_{A'} = \frac{3\pi m_{A'}\epsilon^2}{2N_{eff}\alpha}\epsilon_{vtx}\frac{dN_{\gamma^*}}{dm_{A'}}$$

• where $\epsilon_{vtx} = \frac{\phi_{A'}(\epsilon^2)}{\phi_{\gamma^*}}$ ("efficiency vertex") is ratio of combined detector acceptance and efficiency for

A' and virtual photon decays into charged particles

Expected Signal (Radiative Fraction)

Expected signal proportional to radiative trident production rate

$$N_{A'} = \frac{3\pi m_{A'} \epsilon^2}{2N_{eff} \alpha} \epsilon_{vtx} \frac{dN_{\gamma^*}}{dm_{A'}} \bullet \text{Not measurable in data}$$

- Relate Radiative Tridents to Background:
 - $\frac{dN_{\gamma^*}}{dm_{A'}} = f_{rad} \frac{dN_{bkg}}{dm_{reco}}$ • where $\int_{rad} = \frac{dN_{\gamma^*}}{dm_{A'}} / \frac{dN_{bkg}}{dm_{reco}}$ ("radiative fraction") is ratio of selected MC radiative trident events to MC background (WAB + Tridents)
- The expected signal is now related to the radiative fraction by

$$N_{A'} = \frac{3\pi m_{A'}\epsilon^2}{2N_{eff}\alpha}\epsilon_{vtx}f_{rad}\frac{dN_{bkg}}{dm_{reco}}$$

The last piece needed for the expected signal is the "efficiency vertex" •

 $N_{A'} = \frac{3\pi m_{A'}\epsilon^2}{2N_{eff}\alpha} \epsilon_{vtx} f_{rad} \frac{dN_{bkg}}{dm_{reco}}$ $\epsilon_{vtx} = \frac{\phi_{A'}(\epsilon^2)}{\epsilon_{vtx}}$

Write acceptance/efficiency terms as integral of decay probability distribution ۰ multiplied by fraction of generated events that pass selection F(z)

Prompt decay of virtual photons For virtual photons: ۰ • $\phi_{\gamma^*} = \int \delta(z)$

- For heavy photons: $\phi_{A'}(\epsilon^2) = \int_{z_{tar}}^{\infty} p(\epsilon^2, z) F(z) dz$

Probability distribution depends on A' decay length

For virtual photons, add scaling factor β, and define fraction of events passing selection at the target
F(z=target) = 1

•
$$\phi_{\gamma^*}\beta = \int_{z_{tar}}^{\infty} \delta(z)\beta F(z)dz = 1$$

Simplifies efficiency vertex

•
$$\epsilon_{vtx} = \frac{\phi_{A'}(\epsilon^2)}{\phi_{\gamma^*}}$$
 \blacktriangleright $\epsilon_{vtx} = \beta \phi_{A'}(\epsilon^2)$

Include scaling factor in A' efficiency/acceptance integral

•
$$\beta \phi_{A'}(\epsilon^2) = \int_{z_{tar}}^{\infty} p(\epsilon^2, z) \beta F(z) dz$$

• A' will travels distance z before decay, according to lifetime [arxiv:0906.0580]

•
$$\gamma c \tau \approx \frac{0.8 cm}{N_{eff}} (\frac{E_0}{10 GeV}) (\frac{10^{-4}}{\epsilon})^2 (\frac{100 MeV}{m_{A'}}^2)$$

• Probability distribution in z for A', normalized to 1 when integrated from target $\rightarrow \infty$

•
$$p(\epsilon^2, z) = \frac{\exp \frac{(z_{tar} - z)}{\gamma c \tau}}{\gamma c \tau}$$
 $\epsilon_{vtx} = \int_{target}^{\infty} \frac{\exp \frac{(z_{target} - z)}{\gamma c \tau}}{\gamma c \tau} \beta F(z) dz$

- Efficiencies taken from histograms for simulated A' true z_{vtx} and selected A' (no z_{cut}) true z_{vtx}
- β is the efficiency for prompt decays, so average of first 3 bins at target = β
- Recall: Calculations are done for a particular m_{A'}, so efficiencies re-calculated for every A' mass

- Efficiencies taken from histograms for simulated A' true z_{vtx} and selected A' true z_{vtx}
 - Only selected A' vertex where reconstructed z_{vtx} < z_{cut} are included
- F(z) = Efficiency(z)
- Integral evaluated as sum over bins in z
- Efficiency Vertex calculated for every m_{A'}, ε²

 The last thing needed for the expected signal is the background rate

 $N_{A'} = \frac{3\pi m_{A'}\epsilon^2}{2N_{eff}\alpha} \frac{\epsilon_{vtx} f_{rad}}{dm_{reco}} \frac{dN_{bkg}}{dm_{reco}}$

- Background = (tridents + WABS + beam)
- Take tritrig & WAB MC reconstructed and selected events. For m_A, select mass window centered on m_A with width in linear region
- Count luminosity corrected background events within mass window, and divide by number of mass bins to get

Vertex distribution

HPS - 2015 Engineering Run Published Results

vertex [mm]

strained z

- Both 2015 Engineering run • resonance and displaced vertex analysis are completed
 - Important benchmark for tracker and calorimeter performance
- No resonance found on the • $m(e^+e^-)$ invariant mass
 - Upper limits $e^2 > 6 \times 10^{-6}$
- **Displaced Vertex analysis**
 - Look for vertices at displaced z location wrt target position
 - No sensitivity
 - Best upper limit: $35.7 \times \sigma_{2015}$ (1.7 days live @ -20 $m_{A'} = 51.4 \text{ MeV}, 5^2 \text{ days Xive } 0^{-9}$ physics data with "pre-

Track and Vertex Reconstruction

- Requested tracks in opposite detector halves
- Quality of the vertex, time information, beam spot constraint

Electromagnetic calorimeter

- 442 PbWO₄ crystals coupled to avalanche photodiode readout (2 identical halves of 5x46 cells)
- Cells: 16cm long, front face 13x13 mm²
- $\sigma_E/E@1.06 \text{ GeV} (@2.2 \text{ GeV}) \sim 4\%(3\%)$
- . $\sigma_t @~E \geq 200 \; \mathrm{MeV} \leq 1 \; \mathrm{ns}$
- $\sigma_{pos} \sim 1 2 \text{ mm}$

- Readout at 250 MHz allowing for 8ns trigger window
- Trigger and DAQ at rate > 100 kHz
- Physics trigger menu' composed by coincidence pairs in opposite halves of ECal
- Readout architecture of the SVT limits the readout rate to 50 kHz

The HPS Detector - SVT Tracker

Ŕ

SLAC

63

- Six Layers of Si microstrip axial-stereo (50&100mrad) modules
 - Layer 1-3: single sensor
 - Layer 4-6: double width coverage for better match ECal acceptance
- 36 Sensors
- 180 APV25 chips
- 23,004 channels in total

SVT Detector Performance

SLAC

- Hit-efficiency > 90% across the whole SVT detector
- Slightly worse in inner edges of innermost layers (close to electron beam)
 - Track extrapolation error
 - High pile-up conditions

- Momentum scale and resolution from elastically scattered full beam electrons (FEEs)
- Multiple scattering dominated
- MC Fee momentum is smeared to match data distribution with smearing factor Σ (1.3 1.6) depending on track selection criteria

64