BSM PHYSICS AT THE FORWARD PHYSICS FACILITY AT THE LHC

Sebastian Trojanowski AstroCeNT, NCAC PAS & National Centre for Nuclear Research, Poland

XXIX Cracow EPIPHANY Conference

January 18, 2023

Whitepapers:

J.L. Feng, F. Kling, M.H. Reno, J. Rojo, D. Soldin etal, 2203.05090 L.A. Anchordoqui etal, 2109.10905

+ many other papers

LHC: HIGH p₇ AND LOW p₇ SEARCHES

Heavy new physics preferentially searched for in the high p_{τ} region, but...

LHC is also a factory of light particles

(e.g. light mesons, mostly dismissed as not interesting)

FORWARD PHYSICS FACILITY

FAR-FORWARD SEARCHES AT THE LHC

1000 um

- Forward direction: lots of activity down the beam pipe
- Far-forward detectors:
 - well-screened from pp collisions
 - only neutrinos and muons survive
 - can search for rare BSM events
- Current Run 3: FASER, SND@LHC
- Physics:
 - "Precision" high-energy neutrino physics
 - New physics searches

Far-forward searches at the LHC in a bird's eye view

PURPOSE-BUILT FACILITY

Underground facility:

- ~620 m far forward from the ATLAS IP,
- shielded by ~200 m concrete and rock.
- several experiments proposed (signatures: decay, scattering, ionization)
- up to ~1M neutrino events (of order 10k ν_{T} CC events)

STATUS

- FASER/FASERv and SND@LHC experiments are taking data
- Forward Physics Facility (FPF)

- Experiments: largely based on existing collaborations (FASER, SND@LHC, MilliQan)

– New idea: Forward Liquid Argon Experiment (FLArE) – BNL (lead), UCI, ...

• The U.S. Snowmass process – strong endorsements of the FPF in the Energy Frontier, the Neutrino Frontier, the Rare Process Frontier, the Cosmic Frontier

• CERN:

- Large progress in facility planning
- Extensive simulations (CERN FLUKA team); BG and radiation safety, muons
- Physics Beyond Colliders (PBC) at CERN allocated 75K CHF for site investigation
- Organization
 - Facility & experiments (Run 3 is running, HL-LHC: design)

– Physics – working groups (neutrino, BSM)

PHYSICS AT THE FPF

NEW PHYSICS PARTICLES LIGHT LONG-LIVED (LLP) or STABLE

LIGHT LONG-LIVED PARTICLES

PROTOTYPE SCENARIO – DARK PHOTON

- New light (~sub-GeV) vector secluded from the SM, coupled via kinetic mixing (can be induced by heavy new fields at the loop level charged under both U(1) and U(1))
- Suppressed couplings to SM fermions

SM
$$- - F_{\mu\nu}F_D^{\mu\nu} - - U(1)$$

 $M \longrightarrow \mathcal{L} \supset \frac{1}{2}m_{A'}^2 - \epsilon e \sum_f q_f \bar{f} A' f$
 $M \longrightarrow \mathcal{L} \supset \frac{1}{2}m_{A'}^2 - \epsilon e \sum_f q_f \bar{f} A' f$

• Dark photons can decay into SM fermions

LIGHT DARK MATTER VIA DARK PHOTON

• Dark photon can also mediate interactions between the SM and a ``thermal'' DM relic x

$$\mathcal{L} \supset A'_{\mu} \left(\epsilon \, e \, J^{\mu}_{EM} + g_D \, J^{\mu}_D \right) \quad \mathcal{L} \supset \begin{cases} |\partial_{\mu}\chi|^2 - m_{\chi}^2 |\chi|^2 & \text{(complex scalar DM)} \\ \frac{1}{2} \overline{\chi} i \gamma^{\mu} \partial_{\mu} \chi - \frac{1}{2} m_{\chi} \overline{\chi} \chi & \text{(Majorana fermion DM)} \end{cases} \quad J^{\mu}_D = \begin{cases} i \chi^* \overleftrightarrow{\partial_{\mu}} \chi & \text{(complex scalar DM)} \\ \frac{1}{2} \overline{\chi} \gamma^{\mu} \gamma^5 \chi & \text{(Majorana fermion DM)} \end{cases} \quad J^{\mu}_D = \begin{cases} i \chi^* \overleftrightarrow{\partial_{\mu}} \chi & \text{(majorana fermion DM)} \\ \frac{1}{2} \overline{\chi} \gamma^{\mu} \gamma^5 \chi & \text{(Majorana fermion DM)} \end{cases}$$

• Suppressed SM couplings of A' yield correct DM relic density for ~MeV-GeV \times LDM

LLP = LIGHT LONG-LIVED PARTICLE

LLP SEARCHES AT THE FPF

SELECTED SENSITIVITY REACH PLOTS

Direct light DM detection at the LHC

• We focus on LDM particles produced in the far-forward region of the LHC

& their scattering in a distance detector

- This search is highly complementary to the traditional DM direct detection searches:
- probe of relativistic interaction rates of LDM (DM energy ~ a few hundred GeV)

[collider-boosted DM]

– the search is not sensitive to the precise abundance of χ DM component (possible variations in cosmological scenario)

[collider-produced DM]

Relativistic regime for probing DM interactions

Expected sensitivity reach

Nuclear scatterings also possible: elastic and DIS signatures

HEAVY PARTICLES (UP TO TENS OR HUNDREDS GeV)

MILLICHARGED PARTICLES

Quantised Singularities in the Electromagnetic Field.

By P. A. M. DIRAC, F.R.S., St. John's College, Cambridge.

(Received May 29, 1931.)

- Search for particles with a very small electric charge test of charge quantization
- Wen, Witten, Nucl. Phys. B 261 (1985) 651-677 • Some string theory motivations Shiu, Soler, Ye, PRL '13
- Can also arise when SM is extended with a massless gauge boson (dark photon) kinetically mixed with the SM photon
- Search for new particles with mass m $_{\chi}$ & electric charge ϵ 'e where $\epsilon' << 1$

 $\mathcal{L}_{\mathrm{MCP}} = i\bar{\chi}(\partial \!\!\!/ - i\epsilon' e B \!\!\!/ + M_{\mathrm{MCP}})\chi$

available window for new millicharge particles

MILLICHARGED PARTICLES AT FPF

• milliQan-like detector placed in the FPF

FORMOSA – FORWARD MICROCHARGE SEARCH

Sensitive to small energy depositions dE/dx of a particle with Q<0.1 e; plastic scintillator for detection

- leading projected bounds for m ~< 100 GeV
- complementary signature at FLArE scattering a-la-DM

S. Foroughi-Abari, F. Kling, Y.-D. Tsai, FORMOSA 2010.07941 FPF whitepaper 2109.10905

QUIRKS WITH A LOW CONFINEMENT SCALE

- Postulated particles charged under a hidden strong force, QCD-like SU(N)
- If they carry also SM charge and color, they are pair produced at the LHC and connected by a "hidden" color string
- If they mass exceeds the hidden scale m >> Λ_{hidden} , breaking the string is not energetically favorable and quirks **do not** hadronize

10 Mev Rapid oscillations, energy loss via photon/glueball radiation, annihilation (SM resonances)

Un-resolvable oscillations (seen as neutral pair), low energy loss, straight highly ionizing track

^{10 keV} Macroscopic oscillations (mm-m), pair of charged particles

=> they leave fancy tracks

Negligible impact of a new interaction, HSCP searches at the LHC

10 eV

QUIRKS AT FPF

- Quirk—anti-quirk system has low $p_{\tau} \longrightarrow$ they travel forward (oscillating)
- Heavy (100 GeV TeV) such quirks require LHC energies to be produced but often travel forward like light particles
- Sample projections for fermionic quirks

$$\mathcal{D} = (N_{ ext{IC}}, 3, 1, -1/3),$$

 $\mathcal{E} = (N_{ ext{IC}}, 1, 1, -1),$

NEUTRINO PHYSICS PROGRAM

NEUTRINO PRODUCTION & DETECTION

Forward LHC Neutrinos

High-energy neutrinos at the LHC are preferentially produced in the forward direction

Forward Physics Facility

FORWARD NEUTRINOS

π K

- Pions (for v_{μ}) & kaons (v_{e}) dominate at energies up to few hundred GeV
- Charm dominates at larger energies (also all v_{τ} from charm)

Here – larger uncertainties, further studies ongoing

Measuring neutrino flux & spectrum

window to study forward hadron production in pp collisions at the LHC

• Expected CC event rates (HL-LHC)

~10⁶ ν_{μ} , few x 10⁵ ν_{e} , ~(10³-10⁴) ν_{τ}

NEUTRINO BSM HIGHLIGHTS

• Neutrino oscillations into sterile neutrinos direct probes at larger mass differences than typical neutrino experiments

 $\Delta m^2 \sim 1000 \text{ eV}^2$

(also e.g. Gallium anomaly)

Non-standard neutrino interactions

Example: dipole portal to heavy neutral leptons

Magill etal, 1803.03262

3262
$$\mathcal{L} \supset \mu_N \, \bar{\nu}_L \sigma_{\mu\nu} N_R F^{\mu\nu} + \text{h.c.},$$

Transition magnetic moments of neutrinos before EWSB

$$\mathcal{L} \supset \bar{L} \left(d_{\mathcal{W}} \mathcal{W}^a_{\mu\nu} \tau^a + d_B B_{\mu\nu} \right) \tilde{H} \sigma_{\mu\nu} N_D + h.c.$$

FPF BSM WORKING GROUP

FPF physics working groups (+ different groups for facility and experiments)

WG1 – Neutrino Interactions (Leader: Juan Rojo)

- WG2 Forward Charm Production (Hallsie Reno)
- WG3 Light Hadron Production (Luis Anchordoqui, Dennis Soldin)
- WG4 BSM physics (Brian Batell, ST)

WG4 (BSM) goals:

a) trigger further discussions about possible unique BSM physics opportunities of the FPF,

b) **studies for already proposed benchmarks** (implementation, modeling uncertainties, new prod. and det. modes)

c) **facilitate exchange of (new) ideas** related to FPF BSM physics (slack channel, community, feedback from experimental representatives)

WE INVITE CONTRIBUTIONS / HAPPY TO DISCUSS IDEAS

SUMMARY OF FAR-FORWARD LHC PHYSICS PROGRAM

- For BSM and neutrino physics, the program started with Run 3 FASER(ν), SND@LHC
- For HL-LHC: proposed extension

Forward Physics Facility

- High-energy neutrino physics, connections to QCD & cosmic-rays, BSM
- Tool for BSM simulations: FORESEE F. Kling, ST, 2105.07077

NEUTRINOS FROM CHARM DECAYS

NEUTRINO DEEP INELASTIC SCATTERING

Example signature: DM scattering off electrons

- Signature: recoiled electron (recoil energy E)
- Light mediator favors low energy electron recoil

Expected sensitivity reach

B. Batell, J.L. Feng, A. Ismail, F. Kling, R.M. Abraham, ST, 2107.00666

B. Batell, J.L. Feng, M. Fieg, A. Ismail, F. Kling, R.M. Abraham, ST, 2111.10343