Small-x Quark and Gluon Helicity Contributions to the Proton Spin Puzzle

Yossathorn (Josh) Tawabutr

University of Jyväskylä, Department of Physics, Centre of Excellence in Quark Matter

Yuri Kovchegov The Ohio State University

THE OHIO STATE UNIVERSITY

In collaboration with: Florian Cougoulic, Andrey Tarasov

Outline

- Introduction
- Helicity Operators and Observables at small x
- Evolution Equations
- Closed Evolution Equations
 - Large- N_c limit
 - Large- $N_c \& N_f$ limit
- Phenomenology

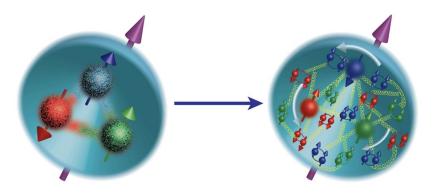
2

Outline

- Introduction
- Helicity Operators and Observables at small x
- Evolution Equations
- Closed Evolution Equations
 - Large-N_c limit
 - Large- $N_c \& N_f$ limit
- Phenomenology

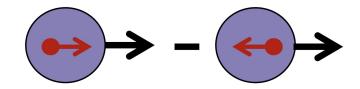
3

Proton Spin



- In the past, proton spin was thought to be the sum of constituent quarks spins.
- Now, we believe it to be the sum of spins of valence quarks, sea quarks and gluons, together with their orbital angular momenta (OAM).

Helicity PDF



- Helicity-dependent generalization of PDFs
- For each parton *f*,

$$\Delta f(x,Q^2) \equiv f^+(x,Q^2) - f^-(x,Q^2)$$

• For quarks, we often consider the "flavor-singlet" quark hPDF:

$$\Delta \Sigma(x,Q^2) = \sum_{f=u,d,s} \left[\Delta f(x,Q^2) + \Delta \bar{f}(x,Q^2) \right]$$

• Gluon hPDF: $\Delta G(x, Q^2)$

Josh Tawabutr & Yuri Kovchegov

Cracow Epiphany Conference 2023

5

Proton Helicity Sum Rule

• Jaffe-Manohar sum rule:
$$\frac{1}{2} = S_q + S_G + L_q + L_G$$

where the helicity of quarks (S_{a}) and gluons (S_{G}) are

$$S_q(Q^2) = \frac{1}{2} \int_0^1 dx \, \Delta \Sigma(x, Q^2) \quad \text{and} \quad S_G(Q^2) = \int_0^1 dx \, \Delta G(x, Q^2)$$

• In the late 1980's, EMC measurement implied that $S_q \approx 0.05$, much lower than what would have been (1/2) had all the proton spin been carried by the constituent quarks.

6

Current Knowledge of Proton Helicity

• More recently, the proton spin carried by quarks and gluon are estimated to be

$$S_q(Q^2 = 10 \text{ GeV}^2) \approx \frac{1}{2} \int_{0.001}^1 dx \,\Delta\Sigma(x, 10 \text{ GeV}^2) \in [0.15, 0.20]$$
$$S_G(Q^2 = 10 \text{ GeV}^2) \approx \int_{0.01}^1 dx \,\Delta G(x, 10 \text{ GeV}^2) \in [0.13, 0.26]$$

- They do not add to 1/2. The missing spin can come from:
 - Orbital angular momenta, L_q and L_G .
 - Small-x region of $\Delta \Sigma$ and ΔG . Scattering experiments can only access finitely small x. The limit will improve with EIC.

 $\frac{1}{2} = S_q + S_G + L_q + L_G$ $S_q(Q^2) = \frac{1}{2} \int_{\alpha}^{1} dx \,\Delta\Sigma(x, Q^2)$

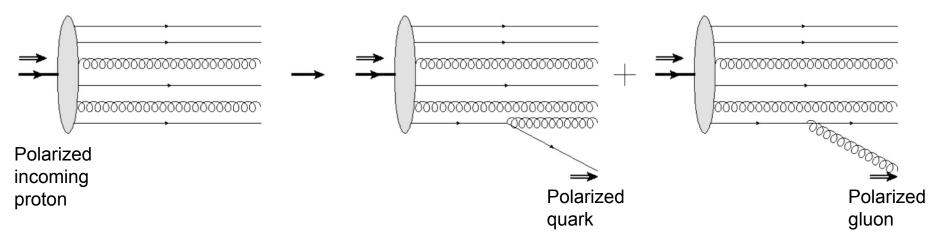
 $S_G(Q^2) = \int_0^1 dx \,\Delta G(x, Q^2)$

Small-x Evolution for Helicity

- Scattering experiments can only access $\Delta \Sigma$ and ΔG down to finitely small x.
- We attempt to fill the gap by finding small-x asymptotics for $\Delta \Sigma$ and ΔG through evolution in x.
 - Evolution constructed by Y. Kovchegov, D. Pitonyak and M. Sievert (KPS) in 2015-18 [1505.01176, 1511.06737, 1610.06197, 1808.09010]
 - Important additional contribution recently calculated by F. Cougoulic, Y.
 Kovchegov, A. Tarasov and Y. Tawabutr (KPS-CTT) in 2022 [2204.11898]
 - Employing similar approach to BK/JIMWLK evolution.

Small-x Evolution for Helicity

• We attempt to fill the gap by finding small-x asymptotics for $\Delta \Sigma$ and ΔG through evolution in x, employing similar approach to BK/JIMWLK evolution.



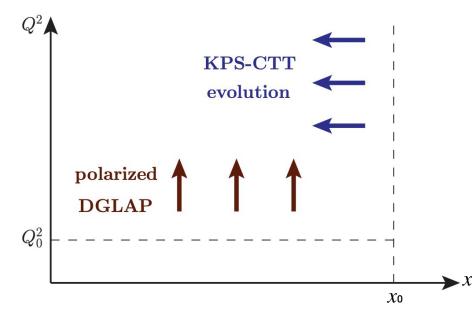
• Helicity evolution must keep track of both quark and gluon helicity, in contrast to unpolarized small-x evolution.

Josh Tawabutr & Yuri Kovchegov

Small-x Quark and Gluon Helicity

Small-x Evolution for Helicity

• The KPS-CTT evolution in x is complementary to the existing polarized DGLAP evolution.



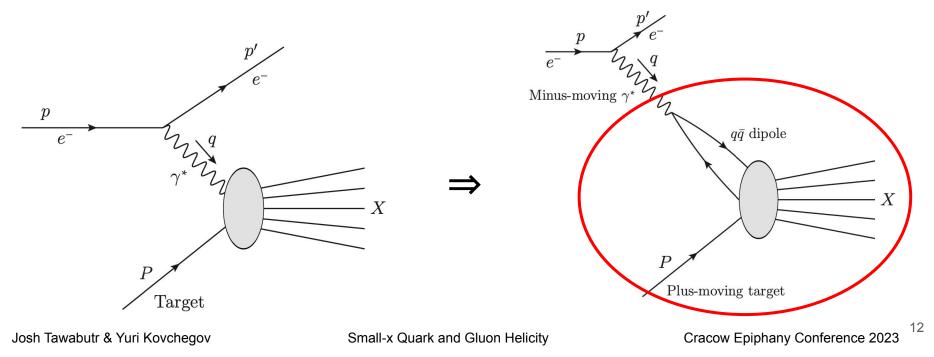
10

Outline

- Introduction
- Helicity Operators and Observables at small x
- Evolution Equations
- Closed Evolution Equations
 - \circ Large- N_c limit
 - Large- $N_c \& N_f$ limit
- Phenomenology

DIS at Small x: The Dipole Picture

• At small-x, DIS is dominated by the contribution where the virtual photon splits into a quark-antiquark dipole, which goes on to interact with the target.

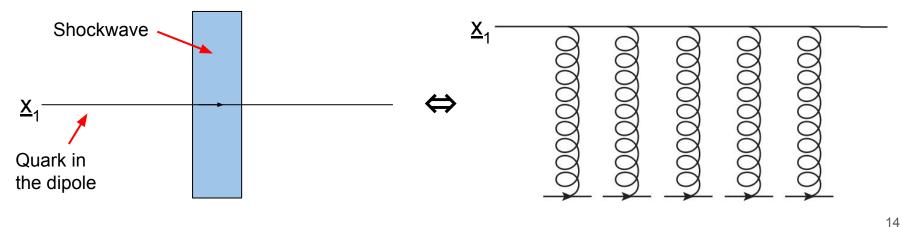


DIS at Small x: The Dipole Picture

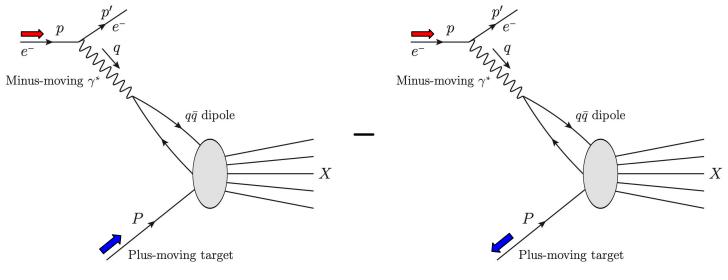
• Unpolarized PDF and structure functions, $F_1(x, Q^2)$ and $F_2(x, Q^2)$, relate to the **s-matrix** of dipole-target scattering:

Unpolarized Dipole Amplitude

- Parton unpolarized PDF, $\Sigma(x, Q^2)$ and $G(x, Q^2)$, relate to unpolarized dipole amplitude, $S_{10}(s) = \frac{1}{N_c} \left\langle \operatorname{tr} \left[V_{\underline{1}} V_{\underline{0}}^{\dagger} \right] \right\rangle(s)$, which obeys BFKL/BK/JIMWLK evolution.
- Quark going through the shockwave at \underline{x}_1 : unpolarized Wilson line,
- Multiple parton exchanges at **eikonal** level (leading order in x).



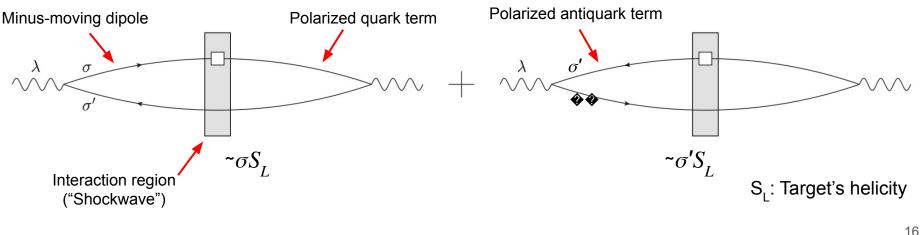
 Polarized parton PDF and structure function, g₁(x, Q²), relate to the helicity-dependent part of dipole-target scattering, which is sub-eikonal (suppressed by 1/s) compared to the leading unpolarized term.



Josh Tawabutr & Yuri Kovchegov

Small-x Quark and Gluon Helicity

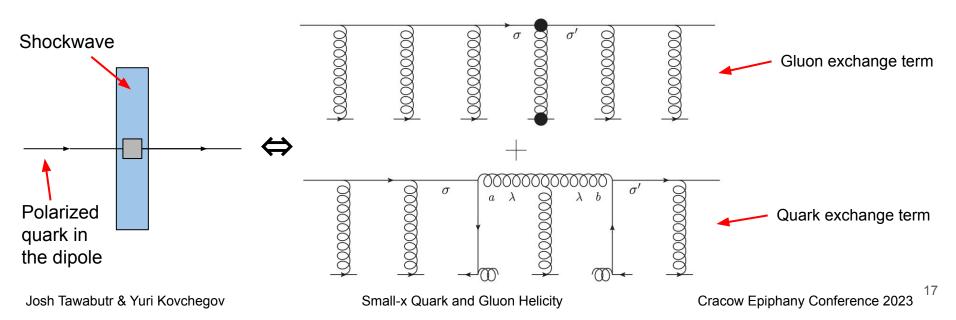
- Polarized parton PDF and structure function, g₁(x, Q²), relate to the helicity-dependent part of dipole-target scattering, which is sub-eikonal (suppressed by 1/s) compared to the leading unpolarized term.
- This leads to the generalize dipole picture for a polarized DIS.



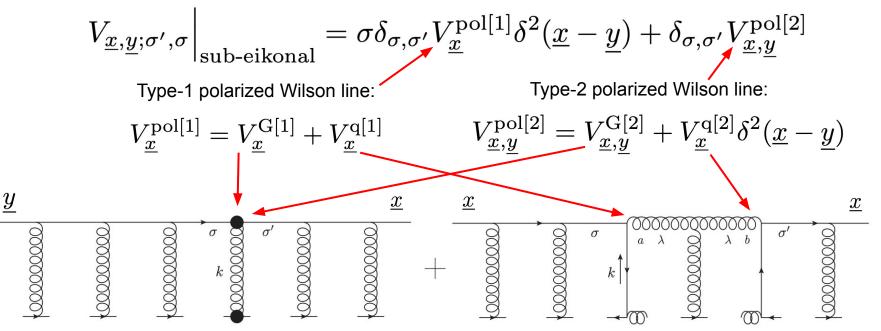
Josh Tawabutr & Yuri Kovchegov

Small-x Quark and Gluon Helicity

 Helicity-dependent quark line going through the shockwave corresponds to multiple eikonal parton exchanges, except for <u>one</u> helicity-dependent exchange, which is **sub-eikonal** (suppressed by an extra factor of x).



• Polarized quark line also corresponds to polarized Wilson line.



Small-x Quark and Gluon Helicity

Type-1 Polarized Wilson Line

- Found and studied previously by [KPS, 1610.06188, 1706.04236, 1808.09010; Chirilli, 1807.11435, 2101.12744; Altinoluk et al, 2012.03886].
- Comes with $\sigma \delta_{\sigma,\sigma'}$, and thought to be the only relevant object in helicity.
- Defines the type-1 polarized dipole amplitude:

Small-x Quark and Gluon Helicity

Type-1 Polarized Wilson Line $Q(x_{10}^2, zs) = \frac{zs}{2N_c} \int d^2 \left(\frac{\underline{x}_0 + \underline{x}_1}{2}\right) \operatorname{Re} \left\langle \operatorname{Ttr} \left[V_{\underline{0}} V_{\underline{1}}^{\operatorname{pol}[1]\dagger}\right] + \operatorname{Ttr} \left[V_{\underline{1}}^{\operatorname{pol}[1]} V_{\underline{0}}^{\dagger}\right] \right\rangle$ $\left\langle \dots \right\rangle \equiv \frac{1}{2} \sum_{S_L} S_L \frac{1}{2P^+V^-} \left\langle P, S_L \right| \dots \left| P, S_L \right\rangle \qquad V_{\underline{x}}^{\text{pol}[1]} = V_{\underline{x}}^{\text{G}[1]} + V_{\underline{x}}^{\text{q}[1]}$ Target's longitudinal spin $V_{\underline{x}}^{\mathbf{G}[1]} = \frac{i g P^+}{s} \int_{-\infty}^{\infty} dx^- V_{\underline{x}}[\infty, x^-] F^{12}(x^-, \underline{x}) V_{\underline{x}}[x^-, -\infty]$ $V_{\underline{x}}^{\mathbf{q}[1]} = \frac{g^2 P^+}{2 s} \int_{-\infty}^{\infty} dx_1^- \int_{x_1^-}^{\infty} dx_2^- V_{\underline{x}}[\infty, x_2^-] t^b \psi_{\beta}(x_2^-, \underline{x}) U_{\underline{x}}^{ba}[x_2^-, x_1^-] \left[\gamma^+ \gamma^5\right]_{\alpha\beta} \bar{\psi}_{\alpha}(x_1^-, \underline{x}) t^a V_{\underline{x}}[x_1^-, -\infty]$ Axial current

Josh Tawabutr & Yuri Kovchegov

Small-x Quark and Gluon Helicity

Type-2 Polarized Wilson Line

- First studied in [Altinoluk et al, 2012.03886; Kovchegov, Santiago, 2108.03667] and introduced to helicity evolution in [2204.11898].
- Comes with $\delta_{\sigma,\sigma'}$, and previously thought not to contribute to helicity.
- The gluon exchange term, $V_{\underline{x},y}^{G[2]}$, contributes, but not the quark exchange term.
- Defines the type-2 polarized dipole amplitude:

$$\begin{aligned} G_{2}(x_{10}^{2},zs) &= \frac{\epsilon^{ij}(x_{10})_{\perp}^{j}}{x_{10}^{2}} \int d^{2} \left(\frac{\underline{x}_{0} + \underline{x}_{1}}{2}\right) \frac{zs}{2N_{c}} \left\langle \operatorname{tr} \left[V_{\underline{0}}^{\dagger} V_{\underline{1}}^{i\,\mathrm{G}[2]} + \left(V_{\underline{1}}^{i\,\mathrm{G}[2]}\right)^{\dagger} V_{\underline{0}} \right] \right\rangle \\ \left\langle \dots \right\rangle &\equiv \frac{1}{2} \sum_{S_{L}} S_{L} \frac{1}{2P^{+}V^{-}} \left\langle P, S_{L} \right| \dots |P, S_{L} \right\rangle \\ & \text{Target's longitudinal spin} \end{aligned}$$
Can be written in term of $V_{\underline{x},\underline{y}}^{\mathrm{G}[2]}$, which is the gluon exchange term in type-2 polarized Wilson line

Type-2 Polarized Wilson Line

$$\begin{split} G_{2}(x_{10}^{2},zs) &= \frac{\epsilon^{ij}(x_{10})_{\perp}^{j}}{x_{10}^{2}} \int d^{2} \left(\frac{\underline{x}_{0} + \underline{x}_{1}}{2}\right) \frac{zs}{2N_{c}} \left\langle \operatorname{tr} \left[V_{\underline{0}}^{\dagger} V_{\underline{1}}^{i\,\mathrm{G}[2]} + \left(V_{\underline{1}}^{i\,\mathrm{G}[2]} \right)^{\dagger} V_{\underline{0}} \right] \right\rangle \\ \left\langle \dots \right\rangle &\equiv \frac{1}{2} \sum_{S_{L}} S_{L} \frac{1}{2P^{+}V^{-}} \left\langle P, S_{L} \right| \dots |P, S_{L} \right\rangle \\ & \text{Target's longitudinal spin} \end{split}$$

$$\begin{aligned} & \text{Can be written in term of } V_{\underline{x},\underline{y}}^{\mathrm{G}[2]} \\ & \text{which is the gluon exchange term in type-2 polarized Wilson line} \end{aligned}$$

$$V_{\underline{z}}^{i\,\mathrm{G}[2]} &= \frac{P^{+}}{2s} \int_{-\infty}^{\infty} dz^{-} V_{\underline{z}}[\infty, z^{-}] \left[D^{i}(z^{-}, \underline{z}) - \overline{D}^{i}(z^{-}, \underline{z}) \right] V_{\underline{z}}[z^{-}, -\infty] \\ V_{\underline{x},\underline{y}}^{\mathrm{G}[2]} &= -\frac{i P^{+}}{s} \int_{-\infty}^{\infty} dz^{-} d^{2}z \ V_{\underline{x}}[\infty, z^{-}] \delta^{2}(\underline{x} - \underline{z}) \ \overline{D}^{i}(z^{-}, \underline{z}) \ D^{i}(z^{-}, \underline{z}) V_{\underline{y}}[z^{-}, -\infty] \delta^{2}(\underline{y} - \underline{z}) \end{aligned}$$

Josh Tawabutr & Yuri Kovchegov

Small-x Quark and Gluon Helicity

Relations with Helicity PDFs and g₁ Structure Function

• Through an expansion in x, helicity PDFs, $\Delta\Sigma(x, Q^2)$ and $\Delta G(x, Q^2)$, relate to polarized dipole amplitudes, $Q(x_{10}^2, zs)$ (type 1) and $G_2(x_{10}^2, zs)$ (type 2) by

$$\begin{split} \Delta\Sigma(x,Q^2) &= -\frac{N_c N_f}{2\pi^3} \int\limits_{\Lambda^2/s}^1 \frac{dz}{z} \int\limits_{\frac{1}{z_s}}^{\min\left\{\frac{1}{zQ^2},\frac{1}{\Lambda^2}\right\}} \frac{dx_{10}^2}{x_{10}^2} \left[Q(x_{10}^2,zs) + 2G_2(x_{10}^2,zs)\right] \\ \Delta G(x,Q^2) &= \frac{2N_c}{\alpha_s\pi^2} \left[\left(1 + x_{10}^2\frac{\partial}{\partial x_{10}^2}\right) G_2\left(x_{10}^2,zs = \frac{Q^2}{x}\right)\right]_{x_{10}^2 = \frac{1}{Q^2}} \end{split}$$

• Similarly, g₁ structure function relates to both polarized dipole amplitudes by

$$g_1(x,Q^2) = -\sum_f \frac{N_c Z_f^2}{4\pi^3} \int_{\Lambda^2/s}^1 \frac{dz}{z} \int_{\frac{1}{zs}}^{\min\left\{\frac{1}{zQ^2},\frac{1}{\Lambda^2}\right\}} \frac{dx_{10}^2}{x_{10}^2} \left[Q(x_{10}^2,zs) + 2G_2(x_{10}^2,zs)\right]$$

Josh Tawabutr & Yuri Kovchegov

Small-x Quark and Gluon Helicity

$$\begin{aligned} & \mathsf{Recap} & \frac{1}{2} = S_q + S_G + L_q + L_G \\ & S_q(Q^2) = \frac{1}{2} \int_0^1 dx \, \Delta \Sigma(x, Q^2) & S_G(Q^2) = \int_0^1 dx \, \Delta G(x, Q^2) \\ & \Delta \Sigma(x, Q^2) = -\frac{N_c N_f}{2\pi^3} \int_{\Lambda^2/s}^1 \frac{dz}{z} \int_{\frac{1}{z_s}}^{\min\left\{\frac{1}{z \in Q^2}, \frac{1}{\Lambda^2}\right\}} \frac{dx_{10}^2}{x_{10}^2} \left[Q(x_{10}^2, zs) + 2 G_2(x_{10}^2, zs)\right] \\ & \Delta G(x, Q^2) = \frac{2N_c}{\alpha_s \pi^2} \left[\left(1 + x_{10}^2 \frac{\partial}{\partial x_{10}^2}\right) G_2\left(x_{10}^2, zs = \frac{Q^2}{x}\right)\right]_{x_{10}^2 = \frac{1}{Q^2}} \\ & Q(x_{10}^2, zs) = \frac{zs}{2N_c} \int d^2 \left(\frac{x_0 + x_1}{2}\right) \operatorname{Re} \left\langle \operatorname{Ttr} \left[V_0 V_1^{\operatorname{pol}[1]\dagger}\right] + \operatorname{Ttr} \left[V_1^{\operatorname{pol}[1]} V_0^{\dagger}\right] \right\rangle \\ & G_2(x_{10}^2, zs) = \frac{\epsilon^{ij}(x_{10})_{\perp}^j}{x_{10}^2} \int d^2 \left(\frac{x_0 + x_1}{2}\right) \frac{zs}{2N_c} \left\langle \operatorname{tr} \left[V_0^{\dagger} V_1^{i G[2]} + \left(V_1^{i G[2]}\right)^{\dagger} V_0\right] \right\rangle \end{aligned}$$

Josh Tawabutr & Yuri Kovchegov

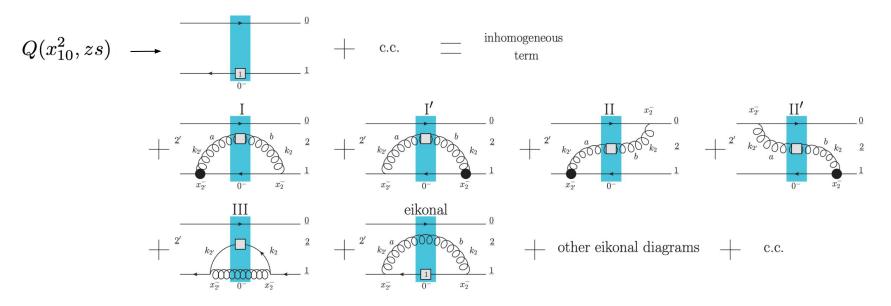
Small-x Quark and Gluon Helicity

Outline

- Introduction
- Helicity Operators and Observables at small x
- Evolution Equations
- Closed Evolution Equations
 - \circ Large- N_c limit
 - Large- $N_c \& N_f$ limit
- Phenomenology

- We employ a blend of Brodsky & Lepage's LCPT and background field method inspired operator treatment. We refer to the latter as the **light-cone operator treatment (LCOT).**
- The largest contributions contain logarithmic integrals in both transverse size (UV & IR) and longitudinal momentum fraction of the daughter dipole.
- As a result, the leading contribution is at **double-logarithmic approximation** (DLA), resumming powers of $\alpha_s \ln^2(1/x)$.
- The complete single-logarithmic corrections are in progress.

• Quark (fundamental) dipole of type 1:



Small-x Quark and Gluon Helicity

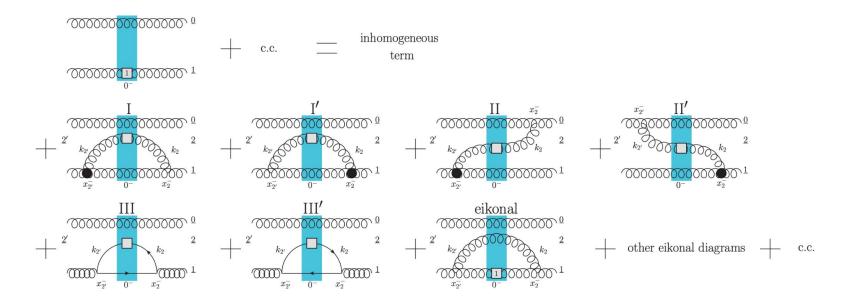
• Quark (fundamental) dipole of type 1:

$$\begin{split} &\frac{1}{2N_c} \left\langle \left\langle \operatorname{tr} \left[V_{\underline{0}} V_{\underline{1}}^{\mathrm{pol}[1]\dagger} \right] + \operatorname{c.c.} \right\rangle (zs) = \frac{1}{2N_c} \left\langle \left\langle \operatorname{tr} \left[V_{\underline{0}} V_{\underline{1}}^{\mathrm{pol}[1]\dagger} \right] + \operatorname{c.c.} \right\rangle _{0} (zs) \right. \\ &+ \frac{\alpha_s N_c}{2\pi^2} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int d^2 x_2 \left\{ \left[\frac{1}{x_{21}^2} - \frac{x_{21}}{x_{21}^2} \cdot \frac{x_{20}}{x_{20}^2} \right] \frac{1}{N_c^2} \left\langle \left\langle \operatorname{tr} \left[t^b V_{\underline{0}} t^a V_{\underline{1}}^{\dagger} \right] \left(U_{\underline{2}}^{\mathrm{pol}[1]} \right)^{ba} + \operatorname{c.c.} \right\rangle \right\rangle (z's) \right. \\ &+ \left[2 \frac{\epsilon^{ij} x_{21}^j}{x_{21}^4} - \frac{\epsilon^{ij} (x_{20}^j + x_{21}^j)}{x_{20}^2 x_{21}^2} - \frac{2 x_{20} \times x_{21}}{x_{20}^2 x_{21}^2} \left(\frac{x_{21}^j}{x_{21}^2} - \frac{x_{20}^j}{x_{20}^2} \right) \right] \frac{1}{N_c^2} \left\langle \left\langle \operatorname{tr} \left[t^b V_{\underline{0}} t^a V_{\underline{1}}^{\dagger} \right] \left(U_{\underline{2}}^{i \operatorname{G}[2]} \right)^{ba} + \operatorname{c.c.} \right\rangle (z's) \right\rangle \right\rangle \\ &+ \left[2 \frac{\epsilon^{ij} x_{21}^j}{x_{21}^4} - \frac{\epsilon^{ij} (x_{20}^j + x_{21}^j)}{x_{20}^2 x_{21}^2} - \frac{2 x_{20} \times x_{21}}{x_{20}^2 x_{21}^2} \left(\frac{x_{21}^j}{x_{21}^2} - \frac{x_{20}^j}{x_{20}^2} \right) \right] \frac{1}{N_c^2} \left\langle \left\langle \operatorname{tr} \left[t^b V_{\underline{0}} t^a V_{\underline{1}}^{\dagger} \right] \left(U_{\underline{2}}^{i \operatorname{G}[2]} \right)^{ba} + \operatorname{c.c.} \right\rangle (z's) \right\rangle \right\rangle \\ &+ \frac{\alpha_s N_c}{4\pi^2} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int \frac{d^2 x_2}{x_{21}^2} \left\{ \frac{1}{N_c^2} \left\langle \left\langle \operatorname{tr} \left[t^b V_{\underline{0}} t^a V_{\underline{2}}^{\mathrm{pol}[1]\dagger} \right] U_{\underline{1}}^{ba} \right\rangle (z's) + 2 \frac{\epsilon^{ij} x_{21}^{j}}{x_{21}^2} \frac{1}{N_c^2} \left\langle \left\langle \operatorname{tr} \left[t^b V_{\underline{0}} t^a V_{\underline{2}}^{\mathrm{pol}[1]\dagger} \right] U_{\underline{1}}^{ba} \right\rangle (z's) + \operatorname{c.c.} \right\} \\ &+ \frac{\alpha_s N_c}{2\pi^2} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int d^2 x_2 \frac{x_{21}^2}{x_{21}^2} \left\{ \frac{1}{N_c^2} \left\langle \operatorname{tr} \left[t^b V_{\underline{0}} t^a V_{\underline{1}}^{\mathrm{pol}[1]\dagger} \right] U_{\underline{1}}^{ba} \right\rangle (z's) - \frac{C_F}{N_c^2} \left\langle \operatorname{tr} \left[V_{\underline{0}} V_{\underline{1}}^{\mathrm{pol}[1]\dagger} \right] \right\rangle (z's) + \operatorname{c.c.} \right\} \end{aligned}$$

Josh Tawabutr & Yuri Kovchegov

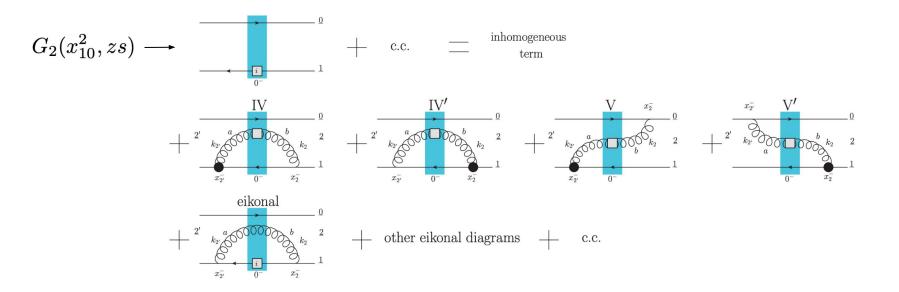
Small-x Quark and Gluon Helicity

• Gluon (adjoint) dipole of type 1:



Small-x Quark and Gluon Helicity

• Quark (fundamental) dipole of type 2:



Josh Tawabutr & Yuri Kovchegov

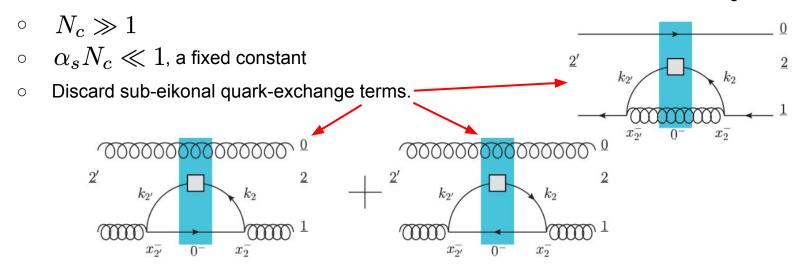
Small-x Quark and Gluon Helicity

Outline

- Introduction
- Helicity Operators and Observables at small x
- Evolution Equations
- Closed Evolution Equations
 - Large-N_c limit
 - Large- $N_c \& N_f$ limit
- Phenomenology

Large- N_c Limit

- For all types of dipoles, the equations do not close in general.
- Similar to BK, we obtain a closed system of equations in the large-N_c limit:



Large- N_c Limit

- Define $G(x_{10}^2, zs)$ as the counterpart of $Q(x_{10}^2, zs)$, with the quark exchange term neglected.
- The equation for $G_2(x_{10}^2, zs)$ remains the same because type-2 polarized Wilson line only has gluon exchange.
- Dipole amplitudes, G and G_2 , form a system of integral equations with the auxiliary **neighbor dipole amplitudes**, Γ and Γ_2 .

$$\begin{pmatrix} G \\ \Gamma \\ G_2 \\ \Gamma_2 \end{pmatrix} = \begin{pmatrix} G \\ \Gamma \\ G_2 \\ \Gamma_2 \end{pmatrix} + \mathcal{K} \otimes \begin{pmatrix} G \\ \Gamma \\ G_2 \\ \Gamma_2 \end{pmatrix}$$

Small-x Quark and Gluon Helicity

$$Large-N_{\mathcal{C}} Limit$$

$$G(x_{10}^{2}, zs) = G^{(0)}(x_{10}^{2}, zs) + \frac{\alpha_{s} N_{c}}{2\pi} \int_{\frac{1}{sx_{10}^{2}}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{x_{10}^{2}} \frac{dx_{21}^{2}}{x_{21}^{2}} \left[\Gamma(x_{10}^{2}, x_{21}^{2}, z's) + 3G(x_{21}^{2}, z's) + 2G_{2}(x_{21}^{2}, z's) + 2\Gamma_{2}(x_{10}^{2}, x_{21}^{2}, z's) \right]$$

Type-1 polarized dipole amplitude (without quark exchange term)

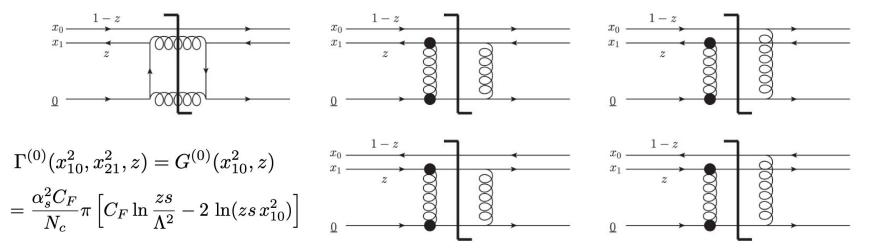
$$\begin{split} \Gamma(x_{10}^2, x_{21}^2, z's) &= G^{(0)}(x_{10}^2, z's) + \frac{\alpha_s N_c}{2\pi} \int_{\frac{1}{sx_{10}^2}}^{z'} \frac{dz''}{z''} \int_{\frac{1}{sx_{10}^2}}^{\min\left[x_{10}^2, x_{21}^2, z''\right]} \frac{dx_{32}^2}{x_{32}^2} \left[\Gamma(x_{10}^2, x_{32}^2, z''s) + 3 G(x_{32}^2, z''s) + 2 G_2(x_{32}^2, z''s) + 2 \Gamma_2(x_{10}^2, x_{32}^2, z''s) \right] \\ G_2(x_{10}^2, zs) &= G_2^{(0)}(x_{10}^2, zs) + \frac{\alpha_s N_c}{\pi} \int_{\frac{\Lambda^2}{z}}^{z} \frac{dz'}{z'} \int_{\max\left[x_{10}^2, \frac{1}{\lambda^2}\right]}^{\min\left[\frac{x}{z'}x_{10}^2, \frac{1}{\lambda^2}\right]} \frac{dx_{21}^2}{x_{21}^2} \left[G(x_{21}^2, z's) + 2 G_2(x_{21}^2, z's) \right] \\ Fype-2 \text{ polarized dipole amplitude} \\ \Gamma_2(x_{10}^2, x_{21}^2, z's) &= G_2^{(0)}(x_{10}^2, z's) + \frac{\alpha_s N_c}{\pi} \int_{\frac{\Lambda^2}{z}}^{z'\frac{x}{21}} \frac{\min\left[\frac{x'}{z'}x_{10}^2, \frac{1}{\lambda^2}\right]}{\sum_{\max\left[x_{10}^2, \frac{1}{z''}\right]}} \frac{dx_{32}^2}{x_{32}^2} \left[G(x_{32}^2, z''s) + 2 G_2(x_{32}^2, z''s) \right] \\ \text{Initial condition: Born-level calculation} \end{split}$$

Josh Tawabutr & Yuri Kovchegov

Small-x Quark and Gluon Helicity

Initial Conditions

• Given by Born-level diagrams. For type-1 dipole amplitude, we have



• Similar Born-level calculation is done for type-2 dipole amplitude, G_2 and Γ_2 .

Asymptotics at Large N_c

• Generally,

$$\Delta \Sigma(x,Q^2) \sim \Delta G(x,Q^2) \sim g_1(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h}$$

- In [2204.11898], α_h is numerically computed to be approx $3.66\sqrt{\frac{\alpha_s N_c}{2\pi}}$, which agrees with the previous work [9603204] by Bartels, Ermolaev and Ryskin (BER).
 - This is a much better agreement than what was obtained from KPS equations, which yielded α_h of $2.31\sqrt{\frac{\alpha_s N_c}{2\pi}}$ for $\Delta \Sigma$ and g_1 and $1.88\sqrt{\frac{\alpha_s N_c}{2\pi}}$ for ΔG .

Asymptotics at Large N_c

• Generally,

$$\Delta\Sigma(x,Q^2) \sim \Delta G(x,Q^2) \sim g_1(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h}$$

• More recently, the analytic expression was calculated for KPS-CTT:

$$\circ \quad \text{KPS-CTT:} \quad \alpha_h = \frac{4}{3^{1/3}} \sqrt{\text{Re} \left[(-9 + i\sqrt{111})^{1/3} \right]} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 3.661 \sqrt{\frac{\alpha_s N_c}{2\pi}} \\ \circ \quad \text{BER (calculated by KPS in 2016):} \quad \alpha_h = \sqrt{\frac{17 + \sqrt{97}}{2}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 3.664 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

This implies that there is still a small disagreement between our result and BER.

Outline

- Introduction
- Helicity Operators and Observables at small x
- Evolution Equations

Closed Evolution Equations

- Large-N_c limit
- Large- $N_c \& N_f$ limit
- Phenomenology

Large- N_c & N_f Limit

- A more realistic extension to the large- N_c limit (since the quark is included)
 - $\begin{array}{l} \circ & N_c, N_f \gg 1 \\ \circ & \alpha_s N_c \sim \alpha_s N_f \ll 1 \text{, fixed constants} \\ \circ & \frac{N_f}{N_c} = \text{ constant of order 1} \end{array}$
- The evolution equation forms a closed system of equations with 6 amplitudes.
- This equations can be solved numerically using a similar technique.

Large- N_c & N_f Limit

- The evolution equation forms a closed system of equations with 6 amplitudes.
- This equations can be solved numerically using a similar technique.

$$\begin{split} Q(x_{10}^2,zs) &= Q^{(0)}(x_{10}^2,zs) + \frac{\alpha_s N_c}{2\pi} \int_{\max\{\Lambda^2,1/x_{10}^2\}}^z \frac{dz'}{z'} \int_{1/z's}^{x_{10}^2} \frac{dx_{21}^2}{x_{21}^2} \left[2\,\widetilde{G}(x_{21}^2,z's) + 2\,\widetilde{\Gamma}(x_{10}^2,x_{21}^2,z's) \right] \\ &\quad + Q(x_{21}^2,z's) - \overline{\Gamma}(x_{10}^2,x_{21}^2,z's) + 2\,\Gamma_2(x_{10}^2,x_{21}^2,z's) + 2\,G_2(x_{21}^2,z's) \right] \\ &\quad + \frac{\alpha_s N_c}{4\pi} \int_{\Lambda^2/s}^z \frac{dz'}{z'} \int_{1/z's}^{x_{10}^2z'z'} \frac{dx_{21}^2}{x_{21}^2} \left[Q(x_{21}^2,z's) + 2\,G_2(x_{21}^2,z's) \right] \\ &\quad + \frac{\alpha_s N_c}{4\pi} \int_{\Lambda^2/s}^{z'} \frac{dz'}{z'} \int_{1/z's}^{x_{10}^2z'z'} \frac{dx_{21}^2}{x_{21}^2} \left[Q(x_{21}^2,z's) + 2\,G_2(x_{21}^2,z's) \right] \\ &\quad + 2\,\widetilde{\Gamma}(x_{10}^2,x_{22}^2,z's) = Q^{(0)}(x_{10}^2,z's) + \frac{\alpha_s N_c}{2\pi} \int_{\pi x(\Lambda^2,1/x_{10}^2)/s} \frac{dz''}{z''} \int_{1/z's}^{x_{10}^2z'z'} \frac{dx_{21}^2}{x_{22}^2} \left[Q(x_{22}^2,z''s) + 2\,G_2(x_{22}^2,z''s) \right] \\ &\quad + 2\,\widetilde{\Gamma}(x_{10}^2,x_{22}^2,z''s) + Q(x_{32}^2,z''s) - \overline{\Gamma}(x_{10}^2,x_{32}^2,z''s) + 2\,\Gamma_2(x_{10}^2,x_{22}^2,z''s) + 2\,G_2(x_{22}^2,z''s) \\ &\quad + 2\,\widetilde{\Gamma}(x_{10}^2,x_{22}^2,z''s) + Q(x_{32}^2,z''s) - \overline{\Gamma}(x_{10}^2,x_{32}^2,z''s) + 2\,\Gamma_2(x_{10}^2,x_{22}^2,z''s) + 2\,G_2(x_{22}^2,z''s) \\ &\quad + 2\,\widetilde{\Gamma}(x_{10}^2,x_{22}^2,z''s) + Q(x_{32}^2,z''s) - \overline{\Gamma}(x_{10}^2,x_{21}^2,z'z') \frac{dx_{21}^2}{x_{22}^2} \left[Q(x_{22}^2,z''s) + 2\,G_2(x_{22}^2,z''s) \right] \\ &\quad + \frac{\alpha_s N_c}{4\pi} \int_{\Lambda^2/s}^{z'} \frac{dz'}{2\pi'} \int_{1/z's}^{x_{21}^2z'z''} \frac{dx_{21}^2}{x_{21}^2} \left[3\,\widetilde{G}(x_{21}^2,z's) + \overline{\Gamma}(x_{10}^2,x_{21}^2,z's) \right] \\ &\quad - \frac{\alpha_s N_f}{8\pi} \int_{\Lambda^2/s}^{z} \frac{dz'}{z'} \int_{\max(\Lambda^2,1/x_{10}^2)/s}^{x_{10}^2z'z'} \frac{dx_{21}^2}{x_{21}^2} \left[Q(x_{22}^2,z''s) + 2\,G_2(x_{22}^2,z''s) \right] \\ &\quad - \frac{\alpha_s N_f}{8\pi} \int_{\Lambda^2/s}^{z'} \frac{dz'}{2\pi'} \int_{\max(\Lambda^2,1/x_{10}^2)/s}^{x_{10}^2z'z'} \frac{dx_{21}^2}{x_{21}^2} \left[Q(x_{22}^2,z''s) + 2\,G_2(x_{22}^2,z''s) \right] \\ &\quad - \frac{\alpha_s N_f}{8\pi} \int_{\Lambda^2/s}^{z'} \frac{dz'}{2\pi'} \int_{\max(\Lambda^2,1/x_{10}^2)/s}^{z'z''z'} \frac{dx_{22}^2}{x_{21}^2} \left[Q(x_{22}^2,z''s) + 2\,G_2(x_{22}^2,z''s) \right] \\ &\quad - \frac{\alpha_s N_f}{8\pi} \int_{\Lambda^2/s}^{z'} \frac{dz'}{2\pi'} \int_{\max(\Lambda^2,1/x_{10}^2)/s}^{z''z''z'} \frac{dx_{22}^2}{x_{21}^2} \left[Q(x_{22}^2,z''s) + 2\,G_2(x_{22}^2,z''s) \right] \\ \\ &\quad - \frac{\alpha_s N_f}{8\pi} \int_{\Lambda^2/s}^{x$$

Josh Tawabutr & Yuri Kovchegov

Small-x Quark and Gluon Helicity

Asymptotics at Large $N_c \& N_f$

• For $N_f \le 5$, we also have

$$\Delta \Sigma(x,Q^2) \sim \Delta G(x,Q^2) \sim g_1(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h}$$

- Recently, a preliminary numerical computation shows that α_h decreases with N_f . However, there is a small (second decimal) disagreement with the corresponding BER intercepts with quarks.
- Possible explanations for the remaining disagreement are under investigation.

Outline

- Introduction
- Helicity Operators and Observables at small x
- Evolution Equations
- Closed Evolution Equations
 - Large-N_c limit
 - Large- $N_c \& N_f$ limit
- Phenomenology

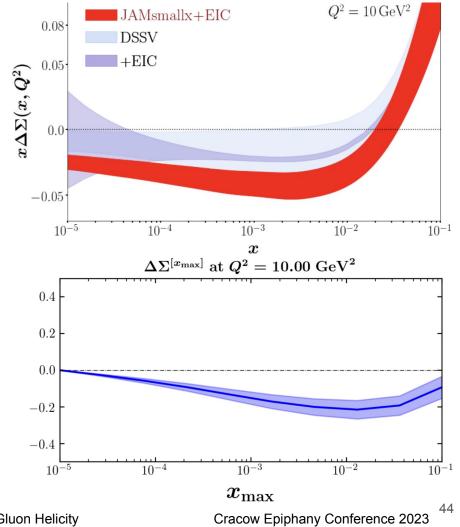
Fits to Polarized DIS Data

- In [2102.06159], the fit was performed by D. Adamiak, W. Melnitchouk, D. Pitonyak, N. Sato, M. Sievert and Y. Kovchegov with polarized DIS data using the large-N_c limit of KPS equations (without the recent corrections).
 - It worked well, with $\chi^2/Npts = 1.01 (\chi^2/Npts = 1.07 \text{ for JAM16})$
 - Small-x evolution starts at $x_0 = 0.1$ (Unpolarized BK/JIMWLK evolution starts around $x_0 = 0.01$.)
 - Our approach fails at larger x as expected ($x_0 = 0.3$ gives $\chi^2/Npts = 4.75$).
- An updated version with the complete KPS-CTT equations at large $N_c \& N_f$ is in progress. This work includes both polarized DIS and SIDIS data.

Fits to Polarized DIS Data

- The KPS evolution is able to constraint e.g. the quark spin at small *x*.
- Potentially negative 10-20% of the proton spin carried by small-x quarks.

Warning: this is preliminary. An updated version with the complete KPS-CTT equations at large $N_c \& N_f$ is in progress.

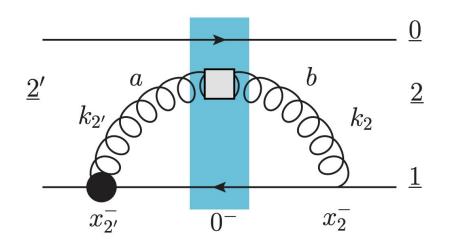


Small-x Quark and Gluon Helicity

Conclusion

- New evolution equations in x for the quark and gluon helicity distributions have been constructed (and corrected).
- These equations have now been studied at large N_c , yielding the small-x asymptotics of $\Delta \Sigma(x, Q^2)$ and $\Delta G(x, Q^2)$. The study of the large- $N_c \& N_f$ equations and OAM distributions are under way.
- First successful fit of polarized world DIS data for x < 0.1 was done using solely the small-x helicity evolution (old KPS version of evolution). There is a clear possibility of a significant amount of proton spin to be found at small x.
- More precise and comprehensive phenomenology to come in the future (helicity+OAM), in preparation for EIC, with the aim of resolving the small-x part of the proton spin puzzle.

Neighbor Polarized Dipole Amplitudes (Γ and Γ_2)



Cougoulic, Kovchegov, Tarasov, Tawabutr, 2204.11898

- At large N_c, this diagram contains a dipole at x₂₀ and a dipole at x₂₁, one of which is polarized.
- The DLA limit requires $x_{21} << x_{10} \sim x_{20}$.
- In the contribution where the x_{20} -dipole is polarized, the dipole has transverse separation x_{20} , but its lifetime is $z'x_{20}^2$, which is much smaller than $z'x_{21}^2$.
- Such the dipole must "know about" both x₂₀ and x₂₁. Hence, it is different from a normal polarized dipole.