The XXIX Cracow Epiphany Conference

Physics at the HL-LHC with proton tagging

18 January 2023

Michael Pitt (Ben-Gurion University)*

* Also at Kansas University

Outline

- Physics with the tagged protons at the LHC
- Experimental apparatus
- Highlights from LHC Run 2 (2015-2018)
- Physics with tagged protons at the HL-LHC (>2029)

Physics with tagged protons at the LHC

Diffractive and Exclusive production in pp collisions at the LHC

Single/double diffractive dissociation

Double pomeron exchange

Single-diffraction with central system X

•

Diffractive and Exclusive production in pp collisions at the LHC Central exclusive production

M. Pitt @ The XXIX Cracow Epiphany Conference

Diffractive and Exclusive production in pp collisions at the LHC

M. Pitt @ The XXIX Cracow Epiphany Conference

Diffractive and Exclusive production in pp collisions at the LHC

Diffractive and Exclusive production in pp collisions at the LHC

Diffractive and Exclusive production in pp collisions at the LHC with proton tag

Proton spectrometers

Two type of forward detectors are installed: vertical and horizontal

Vertical detectors (ALFA, TOTEM)

- Very low pileup (µ~0.02), special LHC optics
- Proton kinematics:

 $\Delta p_z/p_z < 20\%$ and $p_T \sim 0.15 - 2 \text{ GeV}$

Horizontal detectors (AFP, PPS)

- Standard LHC optics (high pileup)
- Proton kinematics:

 $3\% < \Delta p_z/p_z < 20\%$ and $p_T < 4 \text{ GeV}$

Proton spectrometers

Horizontal detectors (AFP, PPS)

- Standard LHC optics (high pileup)
- Proton kinematics:

 $3\% < \Delta p_z/p_z < 20\%$ and $p_T < 4 \text{ GeV}$

Proton spectrometers

18 January 2023

M. Pitt @ The XXIX Cracow Epiphany Conference

Experimental apparatus

Proton spectrometers at the LHC in Run 2+3

PPS Overview

- TOTEM+CMS expertise: PPS TDR (<u>TOTEM-TDR-003</u>)
- PPS successfully integrated during 2016, ~220m from IP5 (initially "CT-PPS")
- Covered mass range between 350 GeV and 2 TeV
- Collected >100 fb⁻¹ during LHC Run 2

Figure 54: Schematic overview of the PPS units in Sector 5-6 (outgoing Beam 1) in the pre-LS3 configuration (top drawing adapted from [123]). The instrumentation in Sector 4-5 (outgoing Beam 2) is mirror-symmetric.

AFP Overview (1)

- 2 stations at $z \simeq 210$ m on each side of IP
 - ("A-NEAR","A-FAR","C-NEAR","C-FAR")
- 4 planes of silicon tracking /stations
- FAR stations also have time-of-flight (ToF)

- Proton kinematics :
- Intact protons lose a fraction of momentum $(\xi = \Delta p_Z/p)$ and are scattered at small angles $(\theta_x^*, \theta_y^*) \rightarrow$ they are deflected

away from the beam and measured by the spectrometers

 $\delta x(z) = x_D(\xi) + v_x(\xi)x^* + L_x(\xi)\theta_x^*$ $\delta y(z) = y_D(\xi) + v_y(\xi)y^* + L_y(\xi)\theta_y^*$

- Proton kinematics :
- Intact protons lose a fraction of momentum $(\xi = \Delta p_Z/p)$ and are scattered at small angles $(\theta_x^*, \theta_y^*) \rightarrow$ they are deflected

away from the beam and measured by the spectrometers

M. Pitt @ The XXIX Cracow Epiphany Conference

Proton kinematics :

Intact protons lose a fraction of momentum ($\xi = \Delta p_Z/p$) and are scattered at small angles $(\theta_x^*, \theta_y^*) \rightarrow$ they are deflected

> $\delta x(z) = x_{D}(\xi) + v_{r}(\xi)x^{*} + L_{r}(\xi)\theta_{r}^{*}$ $\delta y(z) = y_D(\xi) + v_v(\xi)y^* + L_v(\xi)\theta_v^*$

> > **LHC Optics**

CT-PPS

17

Proton kinematics :

Intact protons lose a fraction of momentum ($\xi = \Delta p_z/p$) and are scattered at small angles $(\theta_x^*, \theta_y^*) \rightarrow$ they are deflected

away from the beam and measured by the spectrometers

 $\delta x(z) = x_{D}(\xi) + v_{r}(\xi)x^{*} + L_{r}(\xi)\theta_{r}^{*}$ $\delta y(z) = y_D(\xi) + v_v(\xi)y^* + L_v(\xi)\theta_v^*$

E

-50

CMS Preliminary

2017 (13 TeV)

Other RP locations

Optical functions ear RP sector 56 far RP sector 56 hear RP sector 56 v, far RP sector 56

M. Pitt @ The XXIX Cracow Epiphany Conference

Proton kinematics :

Intact protons lose a fraction of momentum ($\xi = \Delta p_Z/p$) and are scattered at small angles $(\theta_{\chi}^*, \theta_{\gamma}^*) \rightarrow$ they are deflected

away from the beam and measured by the spectrometers

 $\delta x(z) = x_D(\xi) + v_r(\xi)x^* + L_r(\xi)\theta_r^*$ $\delta y(z) = y_D(\xi) + v_v(\xi)y^* + L_v(\xi)\theta_v^*$

LHC Optics

CT-PPS

2 stations

Central exclusive production processes are generated by the exchange of color singlets via QCD (Pomeron) or QED (γ)

Central exclusive production processes are generated by the exchange of color singlets via QCD (Pomeron) or QED (γ)

Central exclusive production processes are generated by the

exchange of color singlets via QCD (Pomeron) or QED (γ)

High mass range is dominated by photon-photon interactions

• Main challenge is the background:

• In the standard LHC runs, tens of interaction occur per bunch crossing

• Main challenge is the background:

• Multiple *pp* collision can fake the signal:

https://cds.cern.ch/record/2746227

• Main challenge is the background:

• Multiple *pp* collision can fake the signal:

https://cds.cern.ch/record/2746227

• Main challenge is the background:

Multiple pp collision can fake the signal: •

• In Central Exclusive production (CEP) processes:

Central system kinematics = **Proton** kinematics

• For given proton momentum loss $\xi = \Delta p/p$:

Proton kinematics can be inferred from the central system:

$$\xi_{\pm} = \frac{\sum E \pm p_Z}{\sqrt{s}}$$

Central system kinematics can be inferred from the protons:

$$m = \sqrt{s\xi_+\xi_-}$$

$$V = \frac{1}{2} log\left(\frac{\xi_+}{\xi_-}\right)$$

Highlights from Run 2

PHYSICAL REVIEW LETTERS 125, 261801 (2020)

Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS

G. Aad et al.* (ATLAS Collaboration)

(Received 2 October 2020; revised 30 October 2020; accepted 23 November 2020; published 23 December 2020)

Signal

Background

+ pileup proton

- Powerful background rejection due to proton tagging and matching between proton and di-lepton kinematics
- Measured cross sections:

 $\sigma_{ee+p} = 11.0 \pm 2.6(\text{stat}) \pm 1.2(\text{syst}) \pm 0.3(\text{lumi}),$

 $\sigma_{\mu\mu+\rho} = 7.2 \pm 1.6 (\text{stat}) \pm 0.9 (\text{syst}) \pm 0.2 (\text{lumi}).$

- Searching for unknown particles using the "missing mass"
 - Implemented for the first time at hadron collider, based on 4π event reconstruction

- Searching for unknown particles using the "missing mass"
- Implemented for the first time at hadron collider, based on 4π event reconstruction
- The 4-vector of unknown state χ is determined from protons and measured boson

$$m_{\rm miss}^2 = \left[(P_{p_1}^{\rm in} + P_{p_2}^{\rm in}) - (P_V + P_{p_1}^{\rm out} + P_{p_2}^{\rm out}) \right]^2$$

• Bump hunt of χ state is performed in Z+ χ and γ + χ channels

- Searching for unknown particles using the "missing mass"
 - Benefit from supreme mass resolution

- Searching for unknown particles using the "missing mass"
 - Benefit from supreme mass resolution
 - Data agree with the background-only model, a limit on

the production cross-section of $Z/\gamma+\chi$ was derived

CMS-Totem Preliminary

Physics with tagged protons at the HL-LHC

Proton spectrometers at the HL-LHC

HL-LHC allows to probe rare processes in the Standard Model.

GOAL: Study of central exclusive production (CEP)

- Using a set of near-beam detectors installed in movable vessels (Roman Pots) with tracking and timing capabilities, operated in standard LHC runs.
- Tracking detectors measure the proton momentum loss $\xi = \frac{\Delta p}{p}$
- Timing detectors measure the vertex position $z_{PV} = c/2(t_{proton_2} t_{proton_1})$, and interaction time

during the bunch crossing $t_{PV} = \frac{1}{2} (t_{proton_2} + t_{proton_1}) - c \cdot Z_{RP}$

• Acceptance vs ξ translated into acceptance vs mass $(m_X = \sqrt{s\xi_1\xi_2})$

PPS @ HL-LHC proposed stations

- Locations from maximization of accepted central mass range
- Farther away \rightarrow smaller mass
- "Warm region" suitable for RP, "cold region" new development needed
- In current proposal the covered masses are:
 133 GeV 2.7 TeV for the first 3 stations
 43 GeV 2.7 TeV for all stations
- Run 2+3 acceptance between 350 GeV and 2 TeV

The CMS Precision Proton Spectrometor at the HLHC Expression of Interest

https://cds.cern.ch/record/2750358

0.45

Dashed line: mass acceptance w/o 420m station

Detector technologies

PPS Options

- Tracking 3D silicon pixel detectors (used by PPS and CMS tracker in Runs 2+3)
- 2. Timing:
 - 1. Diamonds (own developments by TOTEM+PPS, operating in Runs 2+3)
 - 2. Ultra-Fast Silicon Detectors (UFSD a.k.a LGAD) from CMS MIP Timing Detector (MTD)

Each RP houses both tracking and timing (10 timing + 6 tracking planes)

AFP Options

- 1. Tracking 3D silicon pixel detectors (used in Runs 2+3)
- 2. Timing:
 - 1. Cherenkov quartz bars (Used in Run 2+3)
 - 2. Diamonds
 - 3. LGAD

Detector technologies

Timing

- The pp vertex is reconstructed using the ToF method
- Used to suppress combinatorial background
- \circ Goal to reach 15 20 ps / arm timing resolution
- Preliminary studies show a decent PU suppression

M. Pitt @ The XXIX Cracow Epiphany Conference

Standard Model processes

- Fiducial cross sections of CEP of SM processes in pp collisions at $\sqrt{s} = 14$ TeV, calculated with the FPMC generator (using KMR exclusive model for pomeron fluxes and EPA for photon fluxes, survival probabilities of 3% and 90% are considered for QCD and QED processes respectively).
- A central detector selection cut of $p_T > 20$ GeV on the generated objects was applied for all processes with 2 particles in the final state.
- Two scenarios are considered in PPS EoI: with and w/o 420m station:

	fiducial cross section [fb]							
$\mathbf{Process}$	all stations		m w/o~420					
	$\mathbb{P} - \mathbb{P}$	$\gamma - \gamma$	$\mathbb{P} - \mathbb{P}$	$\gamma - \gamma$				
jj	$\mathcal{O}\left(10^6\right)$	60	$\mathcal{O}\left(10^4\right)$	2				
W^+W^-		37		15				
$\mu\mu$		46		1.3				
$t\overline{t}$		0.15		0.1				
Η	0.6	0.07	0	0				
$\gamma\gamma$		0.02		0.003				

QCD Physics

- Systematic study of screening effects in central exclusive di-jet production was never performed.
- Exclusive $b\overline{b}$ production the dominant background for exclusive Higgs searches never measured.

QCD contribution is dominant at low di-jet masses

Figure 7: Integrated cross sections of different exclusive processes with intact protons at $\sqrt{s} = 14 \text{ TeV}$, plotted as a function of the required minimum central system mass. Both photons or b-quarks are required to have a transverse momentum above 20 GeV.

M. Pitt @ The XXIX Cracow Epiphany Conference

Electroweak physics

		s section	$[\mathbf{fb}]$		
	Process	all stations		w/o 420	
		$\mathbb{P} - \mathbb{P}$	$\gamma - \gamma$	${\rm I\!P}-{\rm I\!P}$	$\gamma - \gamma$
	ji	$O(10^{6})$	60	$O(10^4)$	2
Ş	W^+W^-	—	37		15
d	$\mu\mu$	—	46	—	1.3
	tt	—	0.15	—	0.1
	Н	0.6	0.07	0	0
	$\gamma\gamma$		0.02		0.003

τ – lepton electric and magnetic moments in $\gamma\gamma \rightarrow \tau\tau$ events

- Exclusive $\tau \tau$ production can be measured already in Run2+3
- Phenomenological study suggests improved constraints compared to those obtained at LEP

 $pp \rightarrow p \oplus WW \oplus p$

Top physics

- Production of final state above m_{tt} mass threshold (>350 GeV)
- Exclusive ttbar has low cross-section (~0.1fb)
- A few phenomenological studies were published (<u>PRD105,114002</u>, <u>PRD102,074014(2020)</u>, <u>2008.04249</u>)
- Although a low cross-section for CEP, a significance of 3σ expected for inclusive diffractive γ-IP+IPIP at PU rate of 200 and Integrated luminosity of 4 ab⁻¹ (<u>PRD105,114002</u>)

	fiducial cross section [fb]					
Process	all stations		w/o 420			
	$\mathbb{P} - \mathbb{P}$	$\gamma - \gamma$	$\mathbb{P} - \mathbb{P}$	$\gamma - \gamma$		
jj	$O(10^{6})$	60	$O(10^4)$	2		
W^+W^-	_	37	_	15		
$\mu\mu$	_	46		1.3		
$t\bar{t}$	—	0.15	—	0.1		
Н	0.6	0.07	0	0		
$\gamma\gamma$	—	0.02	—	0.003		

- fiducial cross section [fb] Process all stations w/o 420 P $O(10^{6})$ 60 $O(10^4)$ $\mathbf{2}$ jj W^+W^- 37151.346 $\mu\mu$ 0.150.1 $t\bar{t}$ Η 0.60.070 0 0.020.003 $\gamma\gamma$
- Exclusive Higgs boson production is broadly discussed in the literature.
- Cross-section estimates vary by an order of magnitude due to the lack of knowledge of screening effects
- Measurement of the central exclusive production of the Higgs boson is possible only with all 4 stations

Higgs physics

Associated production with WW pairs

- Low cross section (~0.04 fb).
- Detectable with only stations at 200m
- Inclusive Higgs boson production (all decay modes)

High mass searches

Search for Axion like particles (ALPs)

 PPS provides the best sensitivity to anomalous couplings and can probe high di-photon masses in searches for ALPs (~TeV)

Signal / Background is a function of pileup:

 Recently single dissociation and double dissociation were properly modeled (<u>2208.10526</u>) allowing to probe semi-exclusive processes and probing lower ALP masses.

Figure 2: Exclusion regions on the ALP–photon coupling and mass plane. The light-shaded grey regions show the expected 95% CL exclusion limit for $300 \, {\rm fb}^{-1}$ in central exclusive diphoton production events for different branching ratios of the ALP into two photons [16].

[16] C. Baldenegro, S. Fichet, G. von Gersdorff and C. Royon, "Searching for axion-like particles with proton tagging at the LHC", JHEP 1806, 131 (2018), doi:10.1007/JHEP06(2018)131, [arXiv:1803.10835 [hep-ph]].

<u><u>~50, Lumi=300fb⁻¹</u>

The sensitivity will exceed the existing limits at high masses

Anomalous gauge couplings

- Exclusive WW production sets stringent upper limit on the anomalous quartic gauge coupling operators (<u>JHEP08(2016)119</u>).
- Deviation due to aQGC expected to be visible at high masses
- A few % resolution in m_{ww}

Summary

- Proton Spectrometers at HL-LHC extends current CEP studies (both larger mass range and high statistics)
- Challenging environment: large radiation, pileup up to 200
- CMS proposed stagged installation program, starting with 200m during LHC Run 4 (<u>PPS-EOI</u>), where the 420m station is planned for Run5+
- ATLAS/AFP upgrade program: reserve space for Run5 if possible for the machine w/o constrains or additional costs.

• (Elastic) Photon-Photon collisions at the LHC:

$$\frac{dN_X}{dt} = \int \hat{\sigma}_{\gamma\gamma \to X} \frac{d\mathcal{L}_{eff}}{dm} dm$$

- Photon energy is related to charge size:
- <u>Transverse momentum</u>
- $k_{\perp} < 1/R$ (0.06GeV for Pb, 0.3GeV for p)
- Longitudinal momentum $E < \gamma/R$ (80GeV for Pb, 2TeV for p)

Photon fluxes are harder in pp collisions

LHC Run schedule

Last updated: January 2022

Shutdown/Technical stop Protons physics Ions Commissioning with beam

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

Hardware commissioning/magnet training

18 January 2023

HL-LHC Integrated luminosity

HL-LHC preliminary optimistic schedule DG, 13/1/2022

