



### News on HERA proton structure and prospects from EIC

K. Wichmann @EPI23



## 2007: HERA shutdown → 15<sup>th</sup> anniversary of start, 30<sup>th</sup> anniversary of end



# I'm still standing



### Jets produced @ DESY for almost 45 years



 $\overline{\mathbf{x}}$ 



### Why study jets @ HERA?



New NNLO calculations for HERA ep jet production available now

- Implemented in FastNLO and APPLEGRID  $\rightarrow$  fast cross section calculation possible EPJ C 82, 243 (2022) arXiv:2112.01120

### $\rightarrow$ Possible simultaneous determination of PDFs and $\alpha_s(M_z)$ at NNLO

## Why look at as?



 αs is least known coupling constant;

needed to constrain GUT scenarios; cross section predictions, including Higgs;

. . .



Gluon-Fusion Higgs production, LHC 13 TeV



**PDFs** and/or **αs** limit: precision SM and Higgs measurements, BSM searches,

**PDG21:** αs = 0.1175 ± 0.0010 (w/o lattice)

5° C. Gwenlan@Moriond22 6

### what is true $\alpha$ s central value and uncertainty?

new precise determinations have important role to play



### HERA jet data used in NNLO PDF fit EPJC C82 (2022) 243

- Inclusive jets and dijets included
- Trijets from HERAPDF2Jets NLO excluded  $\rightarrow$  no NNLO predictions
- H1 low Q<sup>2</sup> data added particularly sensitive to  $\alpha_s(M_z)$
- Some data points excluded due theory limitations
  - Data at low scale  $\mu$  = (pt\_2+Q\_2) < 10 GeV  $\rightarrow$  scale variations are large (~25% NLO and ~10% NNLO)
  - 6 ZEUS dijet data points at low pt for which predictions are not truly NNLO

| Data set                                   |              | taken       | $Q^2$ [GeV | / <sup>2</sup> ] range | L         | $e^+/e^-$                                 | $\sqrt{s}$ | Norma- | All    | Used   |
|--------------------------------------------|--------------|-------------|------------|------------------------|-----------|-------------------------------------------|------------|--------|--------|--------|
|                                            |              | from to     | from       | to                     | $pb^{-1}$ |                                           | GeV        | lised  | points | points |
| H1 HERA I normalised                       | d jets       | 1999 – 2000 | 150        | 15000                  | 65.4      | e <sup>+</sup> p                          | 319        | yes    | 24     | 24     |
| H1 HERA I jets at low                      | $Q^2$        | 1999 – 2000 | 5          | 100                    | 43.5      | <i>e</i> <sup>+</sup> <i>p</i>            | 319        | no     | 28     | 20     |
| H1 normalised inclusive jets at high $Q^2$ |              | 2003 - 2007 | 150        | 15000                  | 351       | $e^+ p/e^- p$                             | 319        | yes    | 30     | 30     |
| H1 normalised dijets at high $Q^2$         |              | 2003 - 2007 | 150        | 15000                  | 351       | $e^+ p/e^- p$                             | 319        | yes    | 24     | 24     |
| H1 normalised inclusive jets at low $Q^2$  |              | 2005 - 2007 | 5.5        | 80                     | 290       | <i>e</i> + <i>p</i> / <i>e</i> - <i>p</i> | 319        | yes    | 48     | 37     |
| H1 normalised dijets at low $Q^2$          |              | 2005 - 2007 | 5.5        | 80                     | 290       | $e^+ p/e^- p$                             | 319        | yes    | 48     | 37     |
| ZEUS inclusive jets                        |              | 1996 – 1997 | 125        | 10000                  | 38.6      | <i>e</i> <sup>+</sup> <i>p</i>            | 301        | no     | 30     | 30     |
| ZEUS dijets                                | 1998 –2000 & | 2004 - 2007 | 125        | 20000                  | 374       | $e^+ p/e^- p$                             | 318        | no     | 22     | 16     |

- QCD PDF fit with jet data
  - $\rightarrow$  With fixed  $\alpha_s(M_Z)$
  - $\rightarrow$  With free  $\alpha_s(M_z)$  or doing  $\alpha_s(M_z)$  scan  $\rightarrow \alpha_s(M_z)$  value

$$\begin{aligned} & \text{HERAPDF2.0 parameterisation} \\ & xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2}) \\ & xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}}, \\ & xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}\left(1+E_{u_{v}}x^{2}\right), \\ & xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}, \\ & x\overline{U}(x) = A_{\overline{U}}x^{B_{\overline{U}}}(1-x)^{C_{\overline{U}}}\left(1+D_{\overline{U}}x\right), \\ & x\overline{D}(x) = A_{\overline{D}}x^{B_{\overline{D}}}(1-x)^{C_{\overline{D}}}. \end{aligned}$$

- Additional constrains
  - $A_{u_v}, A_{d_v}, A_{g_{\uparrow}}$  constrained by the quark-number sum rules and momentum sum rule
  - $\bullet B_{\overline{U}} = B_{\overline{D}}$

• 
$$x\overline{s} = f_s x\overline{D}$$
 at starting scale,  $f_s = 0.4$ 

PDFs

**O HERA** 

DESY

# $\alpha_s @ NNLO from HERA jets$

- $\alpha_s(M_z)$  determined with experimental, model, param. and hadr. uncertainties
- In fits with free  $\alpha_s(M_z)$  scale uncertainty important  $\rightarrow$  calculated as 100% correlated between bins and data sets



 $\pm$  0.0029 (scale)

PDFs

3

HERA



### Comparison to other HERAPDF2.0 fits

- For previous NLO results scale uncertainty applied as 50% correlated and 50% uncorrelated between bins and data sets (due to inclusion of HQ and trijet data)
- Using the precious procedure at NNLO:

### NNLO

 $\alpha_s(M_Z^2) = 0.1156 \pm 0.0011 \text{ (exp)} ^{+0.0001}_{-0.0002} \text{ (model + parameterisation)}$ 

 $\pm 0.0022$ 

### HERAPDF2.0Jets NLO

 $\alpha_s(M_Z^2) = 0.1183 \pm 0.0009(\exp) \pm 0.0005(\text{model/parameterisation}) \pm 0.0012(\text{hadronisation}) \frac{^{+0.0037}_{-0.0030}(\text{scale})}{^{-0.0030}_{-0.0030}(\text{scale})}.$ 

Scale uncertainties reduced  $\rightarrow$  as expected for NNLO calculations

## comparison to other HERA DIS results

### 1. H1 NNLO jet study using fixed PDFs, includes H1 inclusive-jet and di-jet:

H1 jets  $\mu > 2m_b$  0.1170 (9)<sub>exp</sub> (7)<sub>had</sub> (5)<sub>PDF</sub> (4)<sub>PDF $\alpha_s$ </sub> (2)<sub>PDFset</sub> (38)<sub>scale</sub>

with similar breakup of uncertainties and similar  $\mu$ , new HERA result:

 $\alpha_s(M_Z^2) = 0.1156 \pm 0.0011(\exp+had+PDF) + 0.0001 \pmod{4} \pmod{4} + \Pr(100001) + 0.0029 \pmod{4} + \Pr(100001) + 0.0029 \pmod{4}$ 

H1 also provided a PDF+ $\alpha$ s fit to H1 inclusive and jet data analysis required Q<sup>2</sup> > 10GeV<sup>2</sup>; NEW HERA result re-evaluated with this cut (rather than >3.5GeV<sup>2</sup>), is:  $\alpha_s(M_Z^2) = 0.1156 \pm 0.0011 \text{ (exp)} \pm 0.0002 \text{ (model + parameterisation)} \pm 0.0021 \text{ (scale)}$ 

### 2. <u>NNLOJet+APPLfast</u> using fixed PDFs, includes H1+ZEUS inclusive-jet:

HERA inclusive jets  $\mu > 2m_b$  0.1171 (9)<sub>exp</sub> (5)<sub>had</sub> (4)<sub>PDF</sub> (3)<sub>PDF $\alpha_s$ </sub> (2)<sub>PDFset</sub> (33)<sub>scale</sub>

### C. Gwenlan @ Moriond22 | 11



# Fit with fixed $\alpha_s = 0.1155$



Parametrisation uncertainties
 largest deviation

- 🔶 Model uncertainties
  - all variations added in quadrature

### Experimental uncertainties:

- Hessian method
- Conventional  $\Delta\chi^2$  = 1  $\rightarrow$  68% CL

| Parameter |                 | ameter    | Central value | Downwards variation | Upwards variation |  |  |
|-----------|-----------------|-----------|---------------|---------------------|-------------------|--|--|
|           | $Q^2_{\rm min}$ | $[GeV^2]$ | 3.5           | 2.5                 | 5.0               |  |  |
|           | $f_s$           |           | 0.4           | 0.3                 | 0.5               |  |  |
|           | $M_c$           | [GeV]     | 1.41          | 1.37*               | 1.45              |  |  |
|           | $M_b$           | [GeV]     | 4.20          | 4.10                | 4.30              |  |  |
|           | $\mu_{f0}^2$    | $[GeV^2]$ | 1.9           | 1.6                 | 2.2*              |  |  |

Adding D and E parameters to each PDF

HERA

# Fit with fixed $\alpha_s = 0.118$ How does it compare to HERAPDF2.0? Well!





14

K. Wichmann **( EPIPHANY23** 

K. Wichmann

\_ (2)

# New ZEUS jet measurement





 New HERAII high-Q<sup>2</sup> inclusive jets results from ZEUS (15 years after shutdown)
 Phase-space and cuts identical to H1 high-Q<sup>2</sup> result → direct comparison possible

• Good agreement with H1 and with theory predictions  $\rightarrow$  used in simultaneous PDF and  $\alpha_s$  fit

EPIPHANY23 PDFs @ HERA

ZEUS-prel-22-001



Wichmann @

**EPIPHANY23** 

PDFs

(?)

HERA

# ZEUS-jets QCD fit @ NNLO

- Used jet data sets
  - HERAI ZEUS inclusive jets at high Q<sup>2</sup>
  - HERAI+II ZEUS di-jets at high Q<sup>2</sup>
  - New HERAII ZEUS inclusive jets at high  $Q^2$
- Statistical correlations between ZEUS HERAII jet data sets taken into account via correlation matrix
- Fit method and settings follow exactly HERAPDF2 strategy

### Results

 $\alpha_{s}(M_{Z}^{2}) = 0.1138 \pm 0.0014$  (exp/fit)  $^{+0.0004}_{-0.0008}$  (model/parameterisation)  $^{+0.0012}_{-0.0005}$  (scale)

Note scale uncertainty!

### Comparison to HERAPDF2Jets NNLO



PDFs

3

HERA





### Conclusion

Reduced scale uncertainty  $\rightarrow$ 

present analysis is one of the most precise measurements of a<sub>s</sub>(M<sup>2</sup><sub>z</sub>) at hadron colliders so far<sup>†</sup>

**†**PTEP 2020, 8, 083*C*01 (2020)

# New DIS data for PDFs:





High-x region not covered by HERA  $\rightarrow$  impact on high-x PDFs expected HERAPDF philosophy: get PDFs with HERA data only  $\rightarrow$  start with that

Wichmann

**(** 

**EPIPHANY23** 

PDFS

 $\bigcirc$ 

HERA

# Fits with ATHENA pseudo-data

- ATHENA pseudo-data created using HERAPDF2 NLO
  - $\rightarrow$  NC: 5 centre-of-mass energies
  - $\rightarrow$  CC: only highest energy so far
  - $\rightarrow$  "realistic" uncertainties estimation
- PDF fits "HERAPDF2-style" with DIS and DIS+EIC data





# Impact of EIC data on proton PDF



### <u>As expected for DIS-</u> only fits:

- Dramatic improvement of valence quarks at large x
- Improvement also for gluons/sea

### For global fits:

- Improvement smaller but clearly visible
- Done using profiling method → let's look at full fits

PDFs

**(** 

HERA

## Various data in other PDF sets



PDFs @ HERA





 $u_V \; ({
m NNLO}), \, Q^2 = 1.9 \, {
m GeV}^2$ MSHT20 MSHT20 + ATHENA 1 0.90.20.10.30.40.60.70.90.50.8 $\boldsymbol{x}$  $g \ ({
m NNLO}), \ Q^2 = 10^4 \, {
m GeV}^2$ MSHT20 MSHT20 + ATHENA 0.950.0010.010.10.0001 $\boldsymbol{x}$ 

### Impact of EIC data on global fits @NNLO

- Full fits with MSHT20 pseud-data
- Improvement significantly reduced compared with HERAPDF2.0
- Still significant effects present
  - → biggest impact on upvalence distribution
     → small but valuable
     improvement on all parton
     species visible at all x and Q<sup>2</sup>
     values

Suppl. material to 1606.01736

PDFs

 $\bigcirc$ 

HERA



 $\overline{\mathbf{x}}$ 

Wichmann @

**EPIPHANY23** 

PDFs

**(**2)

HERA

## My private EIC wish list ...





# EIC, world's first e+A collider — will explore nuclear structure at unprecedented level, up to heaviest nuclei



- Nuclear PDFs studied in terms of nuclear modification factor R:
  - It encodes deviations of nPDFs from simple scaling of free nucleon PDFs with atomic mass A after accounting for varying proton-to-neutron ratios using isospin symmetry
- Wichmann @ EPIPHANY23

 $\overline{\mathbf{x}}$ 

- Relative uncertainty of gluon in proton ATHENA-only fits
- Uncertainty of gluon in gold nucleus
- Nuclear modification factor formed
   from ratio of gluon in gold and proton

Suppl. material to 1606.01736

PDFs

**(** 

HERA



## Impact of EIC data on nuclear PDF @NLO

arxiv:1606.01736



 Nuclear modification factors for gluon and u valence and u sea quarks

→ comparison with <u>EPPS16</u> (representative current global fit)

- Fixed target DIS and DY data
- p+A at LHC
- $\pi^{o}$  from PHENIX

Precision largely improved with EIC data only → factor of two @ x ~ 0.1



**Beyond collinear PDFs**:

### TMD PDFs $\rightarrow$ towards global fits

S.Taheri Monfared, H.Jung, K.Wichmann



 $\overline{\mathbf{x}}$ 

Wichmann

**(** 

arXiv:2001.06488

## Motivation

- PB TMDs together with PB TMD parton shower allow very good description of measurements over wide kinematic range
  - $\rightarrow$  excellent description of the DY spectrum in a wide range of  $p_{\tau}$
  - $\rightarrow$  also for jet multiplicity even much beyond reach of corresponding fixedorder calculation

### Is there still any room for improvement? YES!

- PB-TMD NLO fits use HERA DIS data  $\rightarrow$  can be improved by including different data sets in fits
- NuSea data studied
  - $\rightarrow$  generally well described by PB-TMD + NLO
  - $\rightarrow$  deteriorates for region of highest masses
    - large-x region parton densities used in calculation poorly constrained
    - NNPDF3.0 fits better more data used
  - $\rightarrow$  can be improved in global fits

 $\rightarrow$  jet data constrain gluon at high x



K. Wichmann @ EPIPHANY23

PDFs

(ව)

HERA

DESY.

TMDs-what is it? [Phys. Lett. B 772 (2017), 446-451], [JHEP 01 (2018), 070]

- TMDs : Transverse Momentum Dependent parton distributions
- extended collinear PDFs : transverse momentum effects from intrinsic  $k_t$  + evolution

Why TMD?

- fixed order calculations are limited in application
- small transverse momentum & small-x phenomena need TMDs

New approach: Parton Branching (PB) method

- evolution of TMDs and collinear PDFs at LO, NLO & NNLO
- automatically contain soft gluon resummation (at NLL identical to CSS approach)
- unique feature: backward evolution fully determines the TMD shower
- very successful for description of inclusive processes
   [Phys. Rev. D 100 (2019) no.7, 074027], [Eur. Phys. J. C 80 (2020) no.7, 598]



• Two angular ordered sets with different choice of scale in  $\alpha_s$ :

- set1:  $\alpha_s$  (evolution scale)
- set2:  $\alpha_s$ (transverse momentum): similar quality as the NLO + NNLL prediction in  $p_t(z)$  description

Sara Taheri Monfared (DESY)

#### PB TMDs

# Fits using HERAPDF framework



|                           | Dataset                                                                                                                                                                                                                                    | -                 |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| HERA                      | HERA1+2 CCep<br>HERA1+2 CCem<br>HERA1+2 NCem<br>HERA1+2 NCep 820<br>HERA1+2 NCep 920<br>HERA1+2 NCep 460<br>HERA1+2 NCep 575                                                                                                               |                   |
| HERA                      | ZEUS inclusive dijet 98-00/04-07 data<br>H1 low Q2 inclusive jet 99-00 data<br>ZEUS inclusive jet 96-97 data<br>H1 normalised inclusive jets with unfolding<br>H1 normalised dijets with unfolding<br>H1 normalised trijets with unfolding | F                 |
| Tevatron                  | CDF Z rapidity 2010<br>D0 W el nu lepton asymmetry ptl 25 GeV<br>D0 Z rapidity 2007<br>E866, high mass<br>E866, mid mass<br>E866, low mass                                                                                                 | ]                 |
| LHC<br>S. Taheri Monfared | CMS W muon asymmetry<br>CMS W muon asymmetry 8 TeV<br>CMS 7 TeV Z Boson rapidity 2<br>CMS 7 TeV Z Boson rapidity 3<br>CMS 7 TeV Z Boson rapidity 4<br>CMS 7 TeV Z Boson rapidity 5                                                         | Viniglobal PB-Fit |

Total number of data point : 1501

Set1  $\rightarrow$  chi2/dof=1858/1484=1.25 Set2  $\rightarrow$  chi2/dof=1922/1484=1.29

### FastNLO jets

CC e+-p

NC e+-p

FastNLO ep jets normalised

NC ppbar CC ppbar

### NC pp

CC pp

NC pp

- Started with HERA jets
- Added fixed target + CMS W/Z
- Good data description



# Visible improvement for high masses



DESY.

PDFs @ HERA



# Message to take away

• Two new HERA  $\alpha_s$  results  $\rightarrow$  HERAPDF2.0Jets NNLO

 $\alpha_{s}(M_{Z}^{2}) = 0.1156 \pm 0.0011$  (exp/fit)  $^{+0.0001}_{-0.0002}$  (model/parameterisation)  $\pm 0.0029$  (scale)

 $\rightarrow$  ZEUS new jet measurement +  $\alpha_s(M_z)$  fit

 $\alpha_{s}(M_{Z}^{2}) = 0.1138 \pm 0.0014$  (exp/fit)  $^{+0.0004}_{-0.0008}$  (model/parameterisation)  $^{+0.0012}_{-0.0005}$  (scale)

### $\rightarrow$ one of the most precise measurements of $a_s(M^2_z)$ at hadron colliders

- Using EIC data will make tremendous difference

   → proton PDFs, especially at high x
   → nPDFs constrained with 10% precision
- Parton Branching methods allows studying TMDs  $\rightarrow$  global PB TMDs within reach

### HERA still has something to say!



PDFs

 $\bigcirc$ 

HERA



# Additional slides

# Updates in the procedure

- scale choice changes:
- factorisation: µF<sup>2</sup>=(Q<sup>2</sup>+pt<sup>2</sup>)
- cf. µF<sup>2</sup>=Q<sup>2</sup> in previous NLO analysis; updated since not a good choice for low Q<sup>2</sup> jet data; change makes almost no difference for high Q<sup>2</sup> jets
- renormalisation: µR<sup>2</sup>=(Q<sup>2</sup>+pt<sup>2</sup>)
- cf. µR<sup>2</sup>=(Q<sup>2</sup>+pt<sup>2</sup>)/2 in previous NLO analysis
- NNLO fit with  $\mu R^2 = (Q^2 + pt^2)$  gives  $\Delta X^2 = -15$  cf.  $\mu R^2 = (Q^2 + pt^2)/2$  and vice versa for NLO fit
- scale uncertainties treated as completely correlated between bins and datasets

† pt denotes ptiet in the case of inclusive jet cross sections and <pt> for dijets

- improved treatment of hadronisation uncertainties; NOW included together with exp. systematics; treated as <sup>1</sup>/<sub>2</sub> correlated, <sup>1</sup>/<sub>2</sub> uncorrelated between bins and datasets
- (small) uncertainties on theory predictions included



## Estimation of charm & beauty masses

• new HERA combined charm and beauty data: EPJ C78 (2018), 473  $\rightarrow$  updated estimation of  $\rm M_{c}$  and  $\rm M_{b}$ 

 $\rightarrow$  Heavy Quark (HQ) coefficient functions evaluated using Thorne-Roberts Optimised Variable Flavour Number Scheme





# Checking robustness of results

• HERA data at low x and  $Q^2$  may be subject to need for ln(1/x) resummation or higher twist effects (eg arXiv:1506.06042, 1710.05935)



- Alternative parameterisations checked
  - No negative gluon term and no NG but additional Dg parameter
    - $\rightarrow$  both give the same result
    - $\rightarrow$  consistent with nominal

 $\alpha_s(M_Z^2) = 0.1151 \pm 0.0010 \text{ (exp)}$ 



# **Completing NLO picture**



- Similar behavior and level of precision at NLO and NNLO
- However direct comparison of 2015 and 2022 results not possible  $\rightarrow$  different scale choice and slightly different jet data sets
- After unifying (details in backup)

 $\alpha s(MZ) = 0.1186 \pm 0.0014 (exp) NLO$  $\alpha s(MZ) = 0.1144 \pm 0.0013 (exp) NNLO$ 

### ... and how it compares to $\alpha_s = 0.1155$ H1 and ZEUS



DESY.

PDFs

**(**2)

HERA



### **Some remarks on NLO to NNLO comparison- (not in the paper)** Our present NNLO result using <sup>1</sup>/<sub>2</sub> correlated and <sup>1</sup>/<sub>2</sub> uncorrelated scale uncertainty

 $\alpha_{s}(M_{z}) = 0.1156 \pm 0.0011(exp) + 0.0001_{-0.0002}(model+parametrisation \pm 0.0022(scale))$ 

where "exp" denotes the experimental uncertainty which is taken as the fit uncertainty, including the contribution from hadronisation uncertainties.

### Maybe compared with the NLO result

 $\alpha_{s}(M_{Z}) = 0.1183 \pm 0.0008(exp)\pm 0.0012(had)^{+0.0003}(mod/param)^{+0.0037}(scale)$ 

• the choice of scale was different;

### BUT

- the NLO result did not include the recently published H1 low-Q<sup>2</sup> inclusive and dijet data [28];
- the NLO result did not include the newly published low  $p_T$  points from the H1 high- $Q^2$  inclusive data;
- the NNLO result does not include trijet data;
- the NNLO result does not include the low  $p_T$  points from the ZEUS dijet data;
- the NNLO analysis imposes a stronger kinematic cut  $\mu > 10 \text{ GeV}$
- the treatment of hadronisation uncertainty differs.

All these changes with respect to the NLO analysis had to be made to create a consistent environment for a fit at NNLO. at the same time, an NLO fit cannot be done under exactly the same conditions as the NNLO fit since the H1 low  $Q^2$  data cannot be well fitted at NLO. However, an NLO and an NNLO fit can be done under the common conditions:

An NLO and an NNLO fit can be done under the common conditions:

- choice of scale,  $\mu_f^2 = \mu_r^2 = Q^2 + p_T^2$ ;
- exclusion of the H1 low-Q<sup>2</sup> inclusive and dijet data;
- exclusion of the low- $p_T$  points from the H1 high- $Q^2$  inclusive jet data;
- exclusion of trijet data;
- exclusion of low- $p_T$  points from the ZEUS dijet data;
- exclusion of data with  $\mu < 10 \text{ GeV}$
- hadronisation uncertainties treated as correlated systematic uncertainties as done in the NNLO analysis.

The values of  $\alpha_{\rm S}(M_Z)$  obtained for these conditions are: 0.1186 ± 0.0014(exp) NLO and 0.1144 ± 0.0013(exp) NNLO. The change of the NNLO value from the preferred value of 0.1156 is mostly due to the exclusion of the H1 lowQ<sup>2</sup> data and the low-p<sub>T</sub> points at high Q<sup>2</sup>

What do we mean when we say the H1 low Q<sup>2</sup> jets cannot be well fitted at NLO? Simply this, that at NNLO the increase in overall  $\chi 2$  of the fit when the 74 data pts of these data are added is ~80 (exact value depends on  $\alpha_S(M_Z)$  and on scale choice) Whereas at NLO the increase in overall  $\chi 2$  of the fit when the 74 data pts of these data are added is ~180.

(from A. Cooper-Sarkar, alpha-s 2022 workshop)

~ ~

### ... and how it compares to $\alpha_s = 0.1155$ H1 and ZEUS



DESY.

PDFs @ HERA

















10

b)

30

10

30 <p<sub>T</sub>>2 / GeV









PDFs @ HERA

## Uncertainties

- Reduction of low-x gluon (x < 10<sup>-</sup>3) uncertainties due to reduced model/param uncertainties in variations of  $M_c$  and  $\mu_f^2$
- Reduction of high-x gluon (x > 10<sup>-3</sup>) uncertainties due to reduced model/param/exp uncertainties
- The same for other scales







### H1 and ZEUS



DESY.

PDFs

PHERA













### H1 and ZEUS





# HERA combined inclusive DIS

DESY.

<u>HERA combined DIS data are</u> <u>core of every modern PDF</u> <u>extraction</u>

- 2927 data points combined to 1307
- impressive precision

HERAPDF approach uses ONLY HERA data in global QCD fit











### How to obtain collinear/TMD PDFs form PB method? QCD fit to HERA data

Fitting procedure in a nutshell:

- parameterize collinear PDF at  $\mu_0^2$
- produce PB kernels for collinear & TMD distributions to evolve them to  $\mu^2 > \mu_0^2$ [Eur. Phys. J. C 74, 3082 (2014)]
- perform fits to measurements using xFitter frame to extract the initial parametrization (with collinear coefficient functions at NLO)

PB TMDs

- store the TMDs in a grid for later use in CASCADE3 [Eur. Phys. J. C 81, no.5, 425 (2021)]
- plot collinear and TMD pdfs within  $\mathrm{TMDPLOTTER}$  [arXiv:2103.09741]

![](_page_61_Figure_8.jpeg)

- full coupled evolution with all flavors &  $\alpha_s(M_Z^{n_f=5}) = 0.118$
- HERAPDF parametrization form
- using full HERAI+II inclusive DIS data ( $3.5 < Q^2 < 50000 \text{ GeV}^2 \& 4.10^{-5} < x < 0.65$ )
- $\chi^2/dof=1.21$

[Phys. Rev. D 99 (2019) no. 7, 074008]

Sara Taheri Monfared (DESY)

### 4 FLNS:

the same functional form & data as 5FL - parameters are re-fitted

• 
$$m_b \to \infty \& \alpha_s(M_Z^{n_f=4}) = 0.1128$$

• 
$$\chi^2/dof = 1.25$$

[arXiv:2106.09791]