ERC adG YoctoLHC

Quark-Gluon Plasma & Multi Parton Inte Parton distributions from 1D to 5D OCD for BSM studies

ence fee (300€ if naid before

Do not besitate to contact us

The Local Organ

to seeing you in Orsay in Nover

Exclusive heavy vector mes photoproduction on nuclei in N

Vadim Guzey

University of Jyväskylä & Helsinki Institute of Physics University of Helsinki, Finland

Based on K.J. Eskola, C.A. Flett, V. Guzey, T. Löytäinen, H. Paukkunen, PRC 106 (2022) 035202 and arXiv:2210.16048 [hep-ph]

Outline:

- Heavy vector meson (J/ψ) photoproduction at the LHC and constraints on small-x nuclear gluon density
- Exclusive J/ ψ photoproduction in Pb-Pb and O-O UPCs@LHC in NLO pQCD: strong scale dependence, uncertainties due to nPDFs, and quark dominance
 - Open questions and Summary

XXIX Cracow EPIPHANY Conference on Physics at the Electron-Ion Collider and Future Facilities, INP, Polish Academy of Sciences, Cracow, Poland, Jan 16-19, 2023

Ultraperipheral collisions at LHC as photonnucleus collider

• Ultraperipheral collisions (UPCs): ions pass each other at large impact parameters b >> R_A+R_B \rightarrow strong interactions suppressed \rightarrow interaction via quasi-real photons in Weizsäcker-Williams equivalent photon approximation, Budnev, Ginzburg, Meledin, Serbo, Phys. Rept. 15 (1975) 181

• UPCs@LHC allow one to study $\gamma\gamma$, γ p and γ A interactions at unprecedentedly high energies: W_{γ p}=5 TeV, W_{γ A}=700 GeV/A, W_{$\gamma\gamma$}=4.2 TeV

• UPCs can be used to study open questions of proton and nucleus structure in QCD and search for new physics \rightarrow e.g., new info on gluon distributions in nuclei at small x.

Bertulani, Klein, Nystrand, Ann. Rev. Nucl. Part. Sci. 55 (2005) 271; Baltz et al, Phys. Rept. 480 (2008) 1; Contreras and Tapia-Takaki, Int. J. Mod. Phys. A 30 (2015) 1542012; Snowmass Lol, Klein et al, arXiv:2009.03838

Exclusive J/ ψ photoproduction in UPCs

• Cross section of exclusive, coherent J/ ψ photoproduction in AA UPCs \rightarrow two terms corresponding to high photon momentum k⁺ (low-x_A) and low k⁻ (high-x_A) \rightarrow ambiguity in relating J/ ψ rapidity y to gluon momentum fraction x_A.

• In leading logarithmic approximation (LLA) of pQCD (in practice, leading double In(Q²) In(1/x) approximation), Ryskin, Z. Phys. C57 (1993) 89; Brodsky, Frankfurt, Gunion, Mueller, Strikman, PRD 50 (1994) 3134

$$\frac{d\sigma^{\gamma p \to J/\psi p}(t=0)}{dt} = \frac{12\pi^3}{\alpha_{\text{e.m.}}} \frac{\Gamma_V M_V^3}{(4m_c^2)^4} \left[\alpha_s(Q_{\text{eff}}^2) x g(x, Q_{\text{eff}}^2) \right]^2 C(Q^2 = 0)$$

 Γ_{V} is J/ ψ leptonic decay width

gluon density at x=(M_{J/\psi})^2/W^2 and Q_{eff}^2=2.5-3 GeV^2

depends on charmonium distribution amplitude; C(Q²=0)=1 in NR limit.

3

Constraints on small-x gluon shadowing

• Ratio of nucleus and proton UPC cross sections \rightarrow nuclear suppression factor $S(x) \rightarrow$ works only for y=0 and large |y|, where there is no ambiguity

$$S(W_{\gamma p}) = \left[\frac{\sigma_{\gamma P b \to J/\psi P b}}{\sigma_{\gamma P b \to J/\psi P b}^{\mathrm{IA}}}\right]^{1/2} = \kappa_{A/N} \frac{G_A(x, \mu^2)}{AG_N(x, \mu^2)} = \kappa_{A/N} R_g$$

CMS, Run 1

ALICE, Run 1

LTA+CTEQ6L1

EPS09 HKN07

nDS

ALICE, Run 2, y=0

10⁻²

 $\kappa_{A/N} \approx 1$ is a correction due to skewness (Shuvaev transform)

Model-independently* using data on UPCs and on γp at HERA, Abelev *et al.* [ALICE], PLB718 (2013) 1273; Abbas *et al.* [ALICE], EPJ C 73 (2013) 2617; [CMS] PLB 772 (2017) 489; Acharya et al [ALICE], arXiv:2101:04577 [nucl-ex]

10⁻³

1.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 10^{-4}

 $S_{Pb}(x)$

From global QCD fits of nPDFs or leading twist (LTA) nuclear shadowing model Guzey, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290, Guzey, Zhalov, JHEP 1310 (2013) 207

LTA: Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255 EPS09: Eskola, Paukkunen, Salgado, JHEP 0904 (2009) 065 HKN07: Hirai, Kumano, Nagai, PRC 76 (2007) 065207 nDS: de Florian, Sassot, PRD 69 (2004) 074028

• Good agreement with ALICE data at $\stackrel{\times}{y}=0$ (2.76 and 5.02 TeV) \rightarrow direct evidence of significant gluon shadowing, $R_g(x=6\times10^{-4} - 0.001) \approx 0.6 \rightarrow$ agrees with LTA model and EPS09, EPPS16 nuclear parton distribution functions (nPDFs).

 10^{-1}

Constraints on small-x gluon shadowing (2)

• One can attempt to utilize all available ALICE, CMS and LHCb data (17 points) by performing a χ^2 fit assuming a piece-wise form of S(x), Guzey, Kryshen, Strikman, Zhalov, PLB 861 (2021) 136202 + see Refs. to LHC experimental data

 Alternatively, to separate W⁺ and W⁻ contributions at y≠0, one can study UPCs accompanied by forward neutron emission in different classes (0n0n, 0nXn, XnXn), Guzey, Strikman, Zhalov, EPJC 74 (2014) 7, 2942

CMS Physics Analysis
Summary using |y|≈2 data, cms
PAS HIN-22-002

Exclusive J/ ψ **photoproduction in NLO pQCD**

- Collinear factorization for hard exclusive processes, Collins, Frankfurt, Strikman, PRD 56 (1997) 2982: $\gamma A \rightarrow J/\psi A$ amplitude in terms of generalized parton distribution functions (GPDs), Ji, PRD 55 (1997) 7114; Radyushkin PRD 56 (1997) 5524; Diehl, Phys. Rept. 388 (2003) 41
- To next-to-leading order (NLO) of perturbative QCD, Ivanov, Schafer, Szymanowski, Krasnikov, EPJ C 34 (2004) 297, 75 (2015) 75 (Erratum); Jones, Martin, Ryskin, Teubner, J. Phys. G: Nucl. Part. Phys. 43 (2016) 035002

• To leading order (LO), only gluons; both quarks and gluons at NLO.

Exclusive J/ ψ photoproduction in NLO pQCD (2)

• In the limit of high W corresponding to small $\xi = (1/2)(M_{J/\psi})^2/W^2 \ll 1$

$$\begin{split} \mathcal{M}^{\gamma A \to J/\psi A} &\propto i \sqrt{\langle O_1 \rangle_{J/\psi}} \Big[F_A^g(\xi, \xi, t, \mu_F) + \frac{\alpha_s N_c}{\pi} \ln\left(\frac{m_c^2}{\mu_F^2}\right) \int_{\xi}^1 \frac{dx}{x} F^g(x, \xi, t) \\ &+ \frac{\alpha_s C_F}{\pi} \ln\left(\frac{m_c^2}{\mu_F^2}\right) \int_{\xi}^1 dx (F^{q,S}(x, \xi, t) - F^{q,S}(-x, \xi, t)) \Big] & \text{+less singular and non-log terms} \end{split}$$

 \rightarrow helps to qualitatively understand the features of our numerical calculations.

- GPDs are hybrid distributions interpolating between usual PDFs and form factors \rightarrow depend on momentum fractions x and ξ and momentum transfer t.
- Connection between GPDs is necessarily model-dependent. In our analysis, we neglect dependence of GPDs on ξ and used the forward model, $_{\rm Freund,}$

McDermott, Strikman, PRD 67 (2003) 036001. For gluons (quarks are similar):

$$F_A^g(x,\xi,t,\mu_F) = xg_A(x,\mu_F)F_A(t)$$

Nuclear PDFs: EPPS16, nCTEQ15, nNNPDF2.0 + update with EPPS21, nCTEQ15WZSIH, nNNPDF3.0

Nucleus form factor (Woods-Saxon form)

Scale dependence and comparison to data on J/ ψ photoproduction in Pb-Pb UPCs (Runs 1&2)

• Scale dependence of our NLO pQCD results for $m_c \le \mu_F \le M_{J/\psi}$ is very strong.

- One can find an "optimal scale" $\mu_F=2.39$ GeV (EPPS21) giving simultaneously good description of Run 1&2 UPC data \rightarrow note that $\gamma+p\rightarrow J/\psi+p$ proton data is somewhat overestimated.
- Note that updated LHCb data have moved up worsening the agreement with EPPS21.

 The agreement is restored by using nCTEQ15WZSIH nPDFs characterized by large strange quark density → sensitivity to strange quarks in nuclei?

Uncertainties due to nuclear PDFs

• Uncertainties due nPDFs are quite significant \rightarrow opportunity to reduce them using the data on J/ ψ photoproduction in AA UPCs.

• Compared to our original calculations, abnormally large uncertainty associated with EPPS16 disappears when using more recent EPPS21.

• The nNNPDF3.0 nPDFs correspond to much less constrained fit \rightarrow large uncertainties.

NLO pQCD predictions for O-O UPCs

• NLO pQCD predictions for anticipated O-O run with 4 options for $\sqrt{s_{NN}} \rightarrow$ similar trends as for Pb-Pb UPCs \rightarrow large scale and nuclear PDF uncertainties.

Reduction of uncertainties using O/Pb ratio

• One can reduce the significant scale μ_F and nPDF uncertainties by considering the ratio of oxygen to lead UPC cross sections:

$$R^{\rm O/Pb} = \left(\frac{208Z_{\rm Pb}}{16Z_{\rm O}}\right)^2 \frac{d\sigma(\rm O+O\to O+J/\psi+O)/dy}{d\sigma(\rm Pb+Pb\to Pb+J/\psi+Pb)/dy}$$

- Hard scattering coefficient functions for O and Pb are the same \rightarrow differences come from O and Pb nPDFs \rightarrow scale dependence reduced by factor of 10 compared to individual UPC cross sections.
- Reduction of nPDF uncertainties is also large due to additional partial cancellation of uncertainties associated with proton PDFs.

Dominance of quark contribution

• The most striking result is strong cancellations between LO and NLO gluons \rightarrow dominance of quark contribution at central rapidities.

• At the face value, this totally changes the interpretation of data on coherent J/ψ photoproduction in heavy-ion UPCs as a probe of small-x nuclear gluons.

Open question 1: small-x resummation

- \bullet NLO corrections and, hence, the scale dependence are very large \rightarrow large theoretical uncertainties in phenomenological applications.
- The reason is well understood \rightarrow large $\ln(Q^2) \ln(1/\xi)$ terms for $2\xi \approx (M_{J/\psi})^2/W^2 \ll 1$

$$\mathcal{M}^{\gamma A \to J/\psi A} \propto i \sqrt{\langle O_1 \rangle_{J/\psi}} \left[F_A^g(\xi, \xi, t, \mu_F) + \frac{\alpha_s N_c}{\pi} \ln\left(\frac{m_c^2}{\mu_F^2}\right) \int_{\xi}^1 \frac{dx}{x} F^g(x, \xi, t) \right. \\ \left. + \frac{\alpha_s C_F}{\pi} \ln\left(\frac{m_c^2}{\mu_F^2}\right) \int_{\xi}^1 dx (F^{q,S}(x, \xi, t) - F^{q,S}(-x, \xi, t)) \right]$$

- Possible solution: resummation of $\alpha_{\rm S} \ln(Q^2) \ln(1/\xi)$ terms by choosing $\mu_{\rm F}=\mu_{\rm C}$ and subtracting $k_{\rm T} < Q_0 \sim m_{\rm C}$ contribution from NLO coefficient functions (Q₀ subtraction), Jones, Martin, Ryskin, Teubner, EPJC 76 (2016) 11, 633; Flett, Jones, Martin, Ryskin, Teubner, PRD 101 (2020) 9, 094011 \rightarrow leads to stable NLO predictions for the proton.
- However, this does not resum large $\alpha_{\rm S} \ln(1/\xi)$ terms \rightarrow one needs high energy (BFKL-type) resummation, Ivanov, arXiv:0712.31983 [hep-ph]; Ivanov, Pire, Szymanowki, Wagner, EPJ Web. Conf. 112 (2016) 01020

$$\mathcal{I}m\mathcal{M}^{g} \sim H^{g}(\xi,\xi) + \int_{\xi}^{1} \frac{dx}{x} H^{g}(x,\xi) \sum_{n=1}^{\infty} C_{n}(L) \frac{\bar{\alpha}_{s}^{n}}{(n-1)!} \log^{n-1} \frac{x}{\xi} \qquad \text{where} \quad L = \ln(M_{V}^{2}/\mu_{F}^{2}) \sqrt{\frac{1}{2}}$$

Open question 2: non-relativistic effects in charmonium wave function

- Our analysis assumes a static (non-relativistic) limit for J/ψ vertex \rightarrow transition of J/ψ to c-cbar in terms of LO non-relativistic QCD matrix element.
- Standard lore: relativistic corrections are small, Hoodbhoy, PRD 56 (1997) 388

Recent analyses have shown that relativistic v/m_C corrections are sizable, Eskobedo, Lappi, PRD 101 (2020) 3, 034030; Lappi, Mantysaari, Penttala, PRD 102 (2020) 5, 054020
→ wave function dependence does not cancel in nucleus/proton ratio → affects interpretation of nuclear suppression in AA UPCs@LHC.

- There is also a related issue of D-wave (spin rotation) of the charmonium wave function, Krelina, Nemchik, Pasechnik, EPJ C 80 (2020) 2, 92
- Consistent description in pQCD requires J/ψ light-cone distribution amplitude
- → no smooth connection to NR wf, Brodsky, Frankfurt, Gunion, Mueller, Strikman, PRD 50 (1994) 3134

Open question 3: pre-asymptotic effects

• Charm quark mass m_c does not provide sufficiently high scale \rightarrow asymptotic pQCD expressions receive large corrections, Frankfurt, Koepf, Strikman, PRD 57 (1998) 512

• Can be quantified by factor C(Q²) taking $C(0) \propto \left[\frac{\int \frac{dz}{z^2(1-z)^2} \int d^2k_t \phi_V(z,k_t) \Delta_t \phi_\gamma(z,k_t)}{\int \frac{dz}{z(1-z)} \int d^2k_t \phi_V(z,k_t)}\right]^2$ into account quark motion in J/ ψ

• Cross section:
$$\left. \frac{d\sigma_{\gamma^{(*)}N \to VN}}{dt} \right|_{t=0} = \frac{12\pi^3 \Gamma_V M_V^3}{\alpha_{EM} (Q^2 + 4m^2)^4} \left| \alpha_s(Q_{eff}^2) \left(1 + i\beta \right) x G_N(x, Q_{eff}^2) \right|^2 \left(1 + \epsilon \frac{Q^2}{M_V^2} \right) \mathcal{C}(Q^2)$$

• \rightarrow leads to an increase of effective scale $Q_{eff}^2 > (Q^2 + M_V^2)/4$ and significant suppression of the cross section \rightarrow agrees with fixed-target and HERA data on J/ ψ photoproduction on the proton (circa 1998).

Summary

- There is growing interest in using heavy-ion UPCs at the LHC to obtain new constraints on proton and nucleus PDFs.
- First NLO pQCD calculation of exclusive J/ ψ photoproduction in Pb-Pb and O-O UPCs@LHC in the framework of collinear factorization.
- Our analysis confirmed strong scale dependence noticed earlier, quantified uncertainty due to nuclear PDFs, observed the dominance of the quark contribution, and provided simultaneous description of Run 1&2 LHC data.
- From phenomenology point of view, the ultimate goal is to use these data to obtain new information on nuclear PDFs at small x by using in global QCD fits.
- In the present form, this is challenging and more work is required on small-x resummation, non-relativistic corrections, and pre-asymptotic effects.
- Probably the best way forward is to consider ratio of AA/pp UPC cross sections, where most of complications (scale dependence, uncertainties of nPDFs, details of GPD modeling, relativistic corrections) should partially cancel \rightarrow our activity in Jyvaskyla.

Studies of hadron structure in QCD using UPCs@LHC is a precursor of an EIC, which would provide high precision, variation of Q² and a range of target nuclei.