Hunting for gluon Orbital Angular Momentum at the EIC

XXIX Cracow EPIPHANY Conference

on Physics at the Electron-Ion Collider and Future Facilities

16-19 January 2023

Shohini Bhattacharya

RIKEN BNL/BNL
18 January 2023
In Collaboration with:
Renaud Boussarie (CPHT, CNRS)
Yoshitaka Hatta (RIKEN BNL/BNL)

Based on:

PRL 128, 182002 (arXiv: 2201.08709)

Outline

- Generalized TMDs (GTMDs) \& gluon OAM
- Exclusive dijet production as a probe of gluon OAM
- Summary

Non-perturbative functions

PDFs (x)

Non-perturbative functions

PDFs (x)
FFs (Δ)

Non-perturbative functions

Non-perturbative functions

Generalized Transverse Momentum-dependent Distributions

(Meissner, Metz, Schlegel, 2009) GTMDs $\left(x, \vec{k}_{\perp}, \Delta\right)$

Why are GTMDs interesting?

Why are GTMDs interesting?

1) GTMDs are the "Mother Functions"

(Meissner, Metz, Schlegel, 2009) GTMDs $\left(x, \vec{k}_{\perp}, \Delta\right)$

Why are GTMDs interesting?

1) GTMDs are the "Mother Functions"

2) GTMDs contain physics beyond TMDs \& GPDs

(Meissner, Metz, Schlegel, 2009) GTMDs $\left(x, \vec{k}_{\perp}, \Delta\right)$

Why are GTMDs interesting?

3) Connection to Wigner functions Wigner Distribution $\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right)$ (Belitsky, Ji, Yuan, 2003)

(Meissner, Metz, Schlegel, 2009) GTMDs $\left(x, \vec{k}_{\perp}, \Delta\right)$

Applications of Wigner distributions

Jaffe-Manohar spin decomposition

- An incomplete story:

Applications of Wigner distributions

Jaffe-Manohar spin decomposition

- An incomplete story:

Applications of Wigner distributions

Jaffe-Manohar spin decomposition

- An incomplete story:

Applications of Wigner distributions

Jaffe-Manohar spin decomposition

- An incomplete story:

Applications of Wigner distributions

Jaffe-Manohar spin decomposition

- An incomplete story:

An intuitive definition

NRQM: $\langle\mathcal{O}\rangle=\int d x \int d k \mathcal{O}(x, k) W(x, k)$

- OAM as a moment of Wigner distribution :

Applications of Wigner distributions

Jaffe-Manohar spin decomposition

- An incomplete story:

An intuitive definition

NRQM: $\langle\mathcal{O}\rangle=\int d x \int d k \mathcal{O}(x, k) W(x, k)$

- OAM as a moment of Wigner distribution
: (Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xiong, Yuan, 2012)

$$
L_{z}^{q, g}=\int d x \int d^{2} k_{\perp} d^{2} b_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right)_{z} W^{q, g}\left(x, \vec{b}_{\perp}, \vec{k}_{\perp}\right)
$$

Applications of Wigner distributions

Parameterization of a GTMD correlator (unpolarized gluons):

SB, Metz, Ojha, Tsai, Zhou, 1802.10550

- OAM as a moment of Wigner distribution/GTMD: (Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xit ng, Yuan, 2012)

Applications of Wigner distributions

Parameterization of a GTMD correlator (unpolarized gluons):

$$
=\frac{1}{2 M} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\boldsymbol{F}_{1,1}^{g}+\frac{i \sigma^{i+} k_{\perp}^{i}}{P^{+}} \boldsymbol{F}_{1,2}^{g}+\frac{i \sigma^{i+} \Delta_{\perp}^{i}}{P^{+}} \boldsymbol{F}_{1,3}^{g}+\frac{\left.\left.\left.i \sigma^{i j} k_{\perp}^{i} M_{\perp} \boldsymbol{F}_{1,4}^{g}\right] u(p) \lambda\right),{ }^{2}\right]}{}\right.
$$

SB, Metz, Ojha, Tsai, Zhou, $\mathbf{1 8 0 2 . 1 0 5 5 0}$

- OAM as a moment of Wigner distribution/GTMD: (Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xiong, Yuan, 2012)

$$
L_{z}^{L_{z}^{q, g}}=-\int d x \int d^{2} \vec{k}_{\perp} \frac{\vec{k}_{1}^{2}}{M^{2}} F_{1, q}^{q, g}\left(x, \vec{k}_{\perp}^{2}\right)
$$

Relation between GTMD $\boldsymbol{F}_{1,4}^{q, g} \&$ OAM

Applications of Wigner distributions

Parameterization of a GTMD correlator (unpolarized gluons):
sB, Mes, ojime Big question: Is this measurable?

- OAM as a n

Yuan, 2012)

$$
L_{z}^{q, g}=-\int d x \int d^{2} \vec{k}_{\perp} \frac{\vec{k}_{\perp}^{2}}{M^{2}} F_{1,4}^{q, g}\left(x, \vec{k}_{\perp}^{2}\right)
$$

Relation between GTMD $\boldsymbol{F}_{1,4}^{q, g} \&$ OAM

Developments

arXiv: 1601.01585 (2016)
Probing the Small- x Gluon Tomography in Correlated Hard Diffractive Dijet Production in DIS

[^0]
Developments

arXiv: 1601.01585 (2016)

Probing the Small- x Gluon Tomography in Correlated Hard Diffractiy Production in DIS

[^1]arXiv: 1612.02438 (2016)
Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$

Developments

arXiv: 1601.01585 (2016)

Probing the Small- x Gluon Tomography in Correlated Hard Diffracti,
Yoshitaka Hatta, ${ }^{1}$ Bo-Wen Xiao, ${ }^{2}$ and Feng Yuan ${ }^{3}$
arXiv: 1612.02445 (2016)
arXiv: 1612.02438 (2016)
Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$

Gluon orbital angular momentum at small- x
Yoshitaka Hatta, ${ }^{1}$ Yuya Nakagawa, ${ }^{1}$ Bowen Xiao, ${ }^{2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{3,4,5}$

Developments

arXiv: 1601.01585 (2016)

Probing the Small- x Gluon Tomography in Correlated Hard Diffractiv
Yoshitaka Hatta, ${ }^{1}$ Bo-Wen Xiao, ${ }^{2}$ and Feng Yuan ${ }^{3}$
arXiv: 1612.02438 (2016)
Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$

Gluon orbital angular momentum at sr arXiv: 1802.10550 (2018)

Yoshitaka Hatta, ${ }^{1}$ Yuya Nakagawa, ${ }^{1}$ Bowen Xiao, ${ }^{2}$ Feng Yuan,
Exclusive double quarkonium production and generalized TMDs of gluons Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ Vikash Kumar Ojha, ${ }^{2}$ Jeng-Yuan Tsai, ${ }^{1}$ and Jian Zhou ${ }^{2}$

Developments

arXiv: 1601.01585 (2016)

Probing the Small- x Gluon Tomography in Correlated Hard Diffracti, arXiv: 1612.02438 (2016)

| Production in DIS |
| :---: | :---: |

| Yoshitaka Hatta, ${ }^{1}$ Bo-Wen Xiao, ${ }^{2}$ and Feng Yuan ${ }^{3}$ |
| :---: | :---: |

arXiv: $\mathbf{1 6 1 2 . 0 2 4 4 5 (2 0 1 6)}$

Gluon orbital angular momentum at sr arXiv: 1802.10550 (2018)
Yoshitaka Hatta, ${ }^{1}$ Yuya Nakagawa, ${ }^{1}$ Bowen Xiao, ${ }^{2}$ Feng Yuan,
Exclusive double quarkonium production and generalized TMDs of gluons Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ Vikash Kumar Ojha, ${ }^{2}$ Jeng-Yuan Tsai, ${ }^{1}$ and Jian Zhou ${ }^{2}$
arXiv: 1807.08697 (2018)
Probing the Weizsäcker-Williams gluon Wigner distribution in $p p$ collisions Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{2}$ Bo-Wen Xiao, ${ }^{3,4}$ and Feng Yuan ${ }^{5}$

Developments

arXiv: 1601.01585 (2016)

Probing the Small- x Gluon Tomography in Correlated Hard Diffracti Production in DIS

Yoshitaka Hatta, ${ }^{1}$ Bo-Wen Xiao, ${ }^{2}$ and Feng Yuan ${ }^{3}$

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$
arXiv: 1612.02445 (2016)
(2018)

Yoshitaka Hatta, ${ }^{1}$ Yuya Nakagawa, ${ }^{1}$ Bowen Xiao, ${ }^{2}$ Feng Yuan,
Exclusive double quarkonium production and generalized TMDs of gluons
Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ Vikash Kumar Ojha, ${ }^{2}$ Jeng-Yuan Tsai, ${ }^{1}$ and Jian Zhou ${ }^{2}$
arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolarized target: GTMD distributions and the Odderons

Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{1}$ Lech Szymanowski, ${ }^{2}$ and Samuel Wallon ${ }^{3,4}$

Developments

arXiv: 1601.01585 (2016)

Probing the Small- x Gluon Tomography in Correlated Hard Diffracti, Production in DIS

Yoshitaka Hatta, ${ }^{1}$ Bo-Wen Xiao, ${ }^{2}$ and Feng Yuan ${ }^{3}$
arXiv: 1612.02438 (2016)
Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$
arXiv: 1612.02445 (2016)
Gluon orbital angular momentum at sr arXiv: 1802.10550 (2018)

Yoshitaka Hatta, ${ }^{1}$ Yuya Nakagawa, ${ }^{1}$ Bowen Xiao, ${ }^{2}$ Feng Yuan,
Exclusive double quarkonium production and generalized TMDs of gluons Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ Vikash Kumar Ojha, ${ }^{2}$ Jeng-Yuan Tsai, ${ }^{1}$ and Jian Zhou ${ }^{2}$ arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolarized target: GTMD distributions and the Odderons

The CMS Collaboration

Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{S_{N N}}=5.02 \mathrm{TeV}$

Developments

arXiv: 1601.01585 (2016)

Probing the Small- x Gluon Tomography in Correlated Hard Diffracti Production in DIS

Yoshitaka Hatta, ${ }^{1}$ Bo-Wen Xiao, ${ }^{2}$ and Feng Yuan ${ }^{3}$
arXiv: 1612.02438 (2016)
Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$
arXiv: 1612.02445 (2016)
Gluon orbital angular momentum at sr arXiv: 1802.10550 (2018)
Yoshitaka Hatta, ${ }^{1}$ Yuya Nakagawa, ${ }^{1}$ Bowen Xiao, ${ }^{2}$ Feng Yuan,
Exclusive double quarkonium production and generalized TMDs of gluons Shohini Bhattacharya, ${ }^{1}$ Andreas Metz, ${ }^{1}$ Vikash Kumar Ojha, ${ }^{2}$ Jeng-Yuan Tsai, ${ }^{1}$ and Jian Zhou ${ }^{2}$
arXiv: 1807.08697 (2018)
arXiv: 1912.08182 (2019)

Probing the Weizsäcker-Williams gluon Wigner distribu
Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{2}$ Bo-Wen Xiao, ${ }^{3,4}$ an

Probing the gluon Sivers function with an unpolarized target: GTMD distributions and the Odderons

The CMS Collaboration

Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$

arXiv: 2106.13466 (2021)

Probing the gluon tomography in photoproduction of di-pions

Developments

arXiv: 1601.01585 (2016)
Probing the Small- x Gluon Tomography in Correlated Hard Dif activ arXiv: 1612.02438 (2016)
Production in DIS
Yoshitaka Hatta, ${ }^{1}$ Bo-Wen Xiao, ${ }^{2}$ and Feng Yuan ${ }^{3}$
Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$
arXiv: 1612.02445 (2016)

We took a fresh look at this 2016 paper

arXiv: 1807.08697 (2018)

Probing the Weizsäcker-Williams gluon Wigner distribu Renaud Boussarie, ${ }^{1}$ Yoshitaka Hatta, ${ }^{2}$ Bo-Wen Xiao, ${ }^{3,4}$ an

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolarized target: GTMD distributions and the Odderons

The CMS Collaboration

Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{S_{N N}}=5.02 \mathrm{TeV}$
arXiv: 2106.13466 (2021)
Probing the gluon tomography in photoproduction of di-pions
Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya--jin Zhou

Probing gluon OAM through exclusive dijet production

Probing gluon OAM through exclusive dijet production

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, ${ }^{1,2}$ Feng Yuan, ${ }^{3}$ and Yong Zhao ${ }^{1,3}$

Longitudinal single spin asymmetry (SSA):

$$
\begin{aligned}
& \frac{d \Delta \sigma}{d y d Q^{2} d \Omega}=\sigma_{0} h_{p} \frac{2(\bar{z}-z)\left(q_{\perp} \times \Delta_{\perp}\right)}{q_{\perp}^{2}+\mu^{2}}\left[16 \beta(1-y) \mathfrak{I m}\left[F_{g}^{*}+4 \xi^{2} \bar{\beta} F_{g}^{\prime *}\right]\left[\mathcal{L}_{g}+8 \xi^{2} \bar{\beta} \mathcal{L}_{g}^{\prime}\right]\right. \\
&\left.+\left(1+(1-y)^{2}\right) \mathfrak{I m}\left[F_{g}^{*}+2 \xi^{2}(1-2 \beta) F_{g}^{\prime *}\right]\left[\mathcal{L}_{g}+2 \bar{\beta}(1 / z \bar{z}-2)\left(\mathcal{L}_{g}+4 \xi^{2}(1-2 \beta) \mathcal{L}_{g}^{\prime}\right)\right]\right]
\end{aligned}
$$

Probing gluon OAM through exclusive dijet production

Probing gluon OAM through exclusive dijet production

Our work

Signature of the gluon orbital angular momentum
Shohini Bhattacharya, ${ }^{1, *}$ Renaud Boussarie, ${ }^{2, \dagger}$ and Yoshitaka Hatta ${ }^{1,3, \ddagger}$

Distinct feature in our work

Double spin asymmetry (DSA):-
Both electron \& incoming proton are longitudinally polarized

Probing gluon OAM through exclusive dijet production

Probing gluon OAM through exclusive dijet production

Scattering amplitude

Twist expansion:

- Twist-2 amplitude: Proportional to gluon GPD

Braun, Ivanov, 0505263

$$
\begin{aligned}
A_{T}^{2}=\frac{i g_{s}^{2} e_{e m} e_{q}}{N_{c}} & \frac{1}{q_{\perp}^{2}+\mu^{2}}\left(\bar{u}\left(q_{1}\right) 申_{\perp} v\left(q_{2}\right)\right) \int d x \frac{1}{(x+\xi-i \varepsilon)(x-\xi+i \varepsilon)} \\
& \times\left(1+\frac{2 \xi^{2}(1-2 \beta)}{(x+\xi-i \varepsilon)(x-\xi+i \varepsilon)}\right) \int d^{2} k_{\perp} x f_{g}\left(x, \xi, k_{\perp}, \Delta_{\perp}\right)
\end{aligned}
$$

$$
A_{L}^{2}=\frac{i g_{s}^{2} e_{e m} e_{q}}{N_{c}} \frac{1}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}} 4 \xi z \bar{z} Q W\left(\bar{u}\left(q_{1}\right) \gamma^{-} v\left(q_{2}\right)\right) \int d x \frac{1}{(x+\xi-i \varepsilon)(x-\xi+i \varepsilon)}
$$

$$
\times\left(1+\frac{4 \xi^{2} \bar{\beta}}{(x+\xi-i \varepsilon)(x-\xi+i \varepsilon)}\right) \int d^{2} k_{\perp} x f_{g}\left(x, \xi, k_{\perp}, \Delta_{\perp}\right)
$$


```
amplitude
```

Twist expansion:

- Twist-3 amplitude: Proportional to gluon OAM

$$
\begin{aligned}
A_{T}^{3} & =-\frac{i g_{s}^{2} e_{e m} e_{q}}{N_{c}} \frac{2(\bar{z}-z)}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}} \bar{u}\left(q_{1}\right) \epsilon_{\perp} \cdot \gamma_{\perp} v\left(q_{2}\right) \int d x \frac{x}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)^{2}}\left(2 \xi+\frac{(2 \xi)^{3}(1-2 \beta)}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)}\right) \int d^{2} k_{\perp} q_{\perp} \cdot k_{\perp} x f_{g}\left(x, \xi, k_{\perp}, \Delta_{\perp}\right) \\
& -\frac{i g_{s}^{2} e_{e m} e_{q}}{N_{c}} \frac{2(2 \xi)^{2} z \bar{z} W}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}} \bar{u}\left(q_{1}\right) \gamma^{-} v\left(q_{2}\right) \int d x \frac{x}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)^{2}} \int d^{2} k_{\perp} \epsilon_{\perp} \cdot k_{\perp} x f_{g}\left(x, \xi, k_{\perp}, \Delta_{\perp}\right)
\end{aligned}
$$

$$
A_{L}^{3}=\frac{i g_{s}^{2} e_{e m} e_{q}}{N_{c}} \frac{16 \xi^{2}(\bar{z}-z) z \bar{z} Q W}{\left(q_{\perp}^{2}+\mu^{2}\right)^{3}} \bar{u}\left(q_{1}\right) \gamma^{-} v\left(q_{2}\right) \int d x \frac{x}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)^{2}}\left(1+\frac{8 \xi^{2}(1-\beta)}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)}\right) \int d^{2} k_{\perp} q_{\perp} \cdot k_{\perp} x f_{g}\left(x, \xi, k_{\perp}, \Delta_{\perp}\right)
$$

Probing gluon OAM through exclusive dijet production

Scattering amplitude

Twist expansion:

- Twist-3 amplitude: Proportional to gluon OAM

$$
A_{T}^{3}=-\frac{i g_{s}^{2} e_{e m} e_{q}}{N_{c}} \frac{2(\bar{z}-z)}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}} \bar{u}\left(q_{1}\right) \epsilon_{\perp} \cdot \gamma_{\perp} v\left(q_{2} \int d x \frac{x}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)^{2}}\left(2 \varepsilon \frac{(2 \xi)^{3}(1-2 \beta)}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)}\right) \int d^{2} k_{\perp} q_{\perp} \cdot \boldsymbol{k}_{\perp} x f_{g}\left(x, \xi, k_{\perp}, \Delta_{\perp}\right)\right.
$$

Factorization-breaking third poles at $x= \pm \xi$

$$
A_{L}^{3}=\frac{i g_{s}^{2} e_{e m} e_{q}}{N_{c}} \frac{16 \xi^{2}(\bar{z}-z) z \bar{z} Q W}{\left(q_{\perp}^{2}+\mu^{2}\right)^{3}} \bar{u}\left(q_{1}\right) \gamma^{-} v\left(q \int \frac{x}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)^{2}}\left(\frac{8 \xi^{2}(1-\beta)}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)}\right) \chi^{2} k_{\perp} q_{\perp} \cdot \boldsymbol{k}_{\perp} x f_{g}\left(x, \xi, k_{\perp}, \Delta_{\perp}\right)\right.
$$

Probing gluon OAM through exclusive dijet production

Probing gluon OAM through exclusive dijet production

Scattering amplitude

Twict Eynancion.

Switch off the factorization-breaking third poles by setting $z=\bar{z}=\frac{1}{2}$

Probing gluon OAM through exclusive dijet production

Scattering amplitude

Twict avnancion.
Switch off the factorization-breaking third poles by setting $z=\bar{z}=\frac{1}{2}$

$$
A_{T}^{3}=-\frac{i g_{s}^{2} e_{e m} e_{q}}{N_{c}} \frac{2(\bar{z}-z)}{\left.q^{2}+\mu^{2}\right)^{2}} \bar{u}\left(q_{1}\right) \epsilon_{\perp} \cdot \gamma_{\perp} v\left(q_{2} \int d x \frac{x}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)^{2}}\left(2 \varepsilon \cdot \frac{(2 \xi)^{3}(1-2 \beta)}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)}\right) \int d^{2} k_{\perp} q_{\perp} \cdot k_{\perp} x f_{g}\left(x, \xi, k_{\perp}, \Delta_{\perp}\right)\right.
$$

Recall: Not possible in SSA

$$
\text { Factorization-breaking third poles at } x= \pm \xi
$$

Probing gluon OAM through exclusive dijet production

Scattering amplitude

Twict aynancinn•
Switch off the factorization-breaking third poles by setting $z=\bar{z}=\frac{1}{2}$

$$
\begin{aligned}
A_{T}^{3} & =-\frac{i g_{s}^{2} e_{e m} e_{q}}{N_{c}} \frac{2(\bar{z}-z)}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}} \bar{u}\left(q_{1}\right) \epsilon_{\perp} \cdot \gamma_{\perp} v\left(q_{2}\right. \\
& -\frac{i g_{s}^{2} e_{e m} e_{q}}{N_{c}} \frac{2(2 \xi)^{2} z \bar{z} W}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}} \bar{u}\left(q_{1}\right) \gamma^{-} v\left(q_{2}\right) \int d x \frac{x}{\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)^{2}}\left(x^{2}-\xi^{2}+i \xi \varepsilon\right)^{2} \\
\left(x^{2}-\xi^{2}+i \xi \varepsilon\right) & d^{2} k_{\perp} \epsilon_{\perp} \cdot k_{\perp} x f_{g}\left(x, \xi, k_{\perp}, \Delta_{\perp}\right)
\end{aligned}
$$

DSA is sensitive to OAM through an interference between twist-2 amplitude $A^{2} \&$ twist- 3 amplitude A_{T}^{3} (No third pole)

$$
A_{L}^{3}=\frac{i g_{S}^{2} e_{e m} e_{q}}{N_{c}} \frac{16 \xi^{2}(\bar{z}-z) z \bar{z} Q W}{\left(q^{2}+\mu^{2}\right)^{3}} \bar{u}\left(q_{1}\right) \gamma
$$

Probing gluon OAM through exclusive dijet production

Scattering amplitude

Main result $(z=1 / 2)$:
DSA's OAM part:

$$
\begin{aligned}
\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu} & =-\frac{2^{10} \pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{e m} e_{q}^{2} \frac{(1+\xi) \xi Q^{2}}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}}\left|l_{\perp}\right|\left|\Delta_{\perp}\right| \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right) \\
& \times \mathfrak{R e}\left[\left\{\mathcal{H}_{g}^{(1) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1) *}+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}}\left(\mathcal{H}_{g}^{(2) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2) *}\right)\right\} \mathcal{L}_{g}+\left(\mathcal{E}_{g}^{(1) *}+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2) *}\right) \frac{\mathcal{O}}{2}\right]
\end{aligned}
$$

Probing gluon OAM through exclusive dijet production

Scattering amplitude
DSA does not vanish for symmetric jet configurations $z=\bar{z}=\frac{1}{2}$
Main result $(z=1 / 2)$:
Consequence:
Elimination of factorization-breaking third poles at $x= \pm \xi$
$\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu}=-\frac{2^{10} \pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{e m} e_{q}^{2} \frac{(1+\xi) \xi Q^{2}}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}}\left|l_{\perp}\right|\left|\Delta_{\perp}\right| \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right)$
$\times \mathfrak{R e}\left[\left\{\begin{array}{l}\left\{\mathcal{H}_{g}^{(1) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1) *}+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}}\left(\mathcal{H}_{g}^{(2) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2) *}\right)\right\} \\ \left.\mathcal{L}_{g}+\left(\mathcal{E}_{g}^{(1) *}+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2) *}\right) \frac{\mathcal{O}}{2}\right]\end{array}\right]\right.$
"Compton Form Factors":

$$
\mathcal{L}_{g}(\xi)=\int_{-1}^{1} d x \frac{x^{2} L_{g}(x, \xi)}{(x-\xi+i \epsilon)^{2}(x+\xi-i \epsilon)^{2}}
$$

$$
\mathcal{H}_{g}^{(1)}(\xi)=\int_{-1}^{1} d x \frac{H_{g}(x, \xi)}{(x-\xi+i \epsilon)(x+\xi-i \epsilon)} \quad \mathcal{H}_{g}^{(2)}(\xi)=\int_{-1}^{1} d x \frac{\xi^{2} H_{g}(x, \xi)}{(x-\xi+i \epsilon)^{2}(x+\xi-i \epsilon)^{2}}
$$

Probing gluon OAM through exclusive dijet production

Scattering amplitude

Main result $(z=1 / 2)$:

Signature of gluon OAM is cosine angular modulation

Probing gluon OAM through exclusive dijet production

Scattering amplitude

Main result $(z=1 / 2)$:
DSA's OAM part:
$\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu}=-\frac{2^{10} \pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{e m} e_{q}^{2} \frac{(1+\xi) \xi Q^{2}}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}}\left|l_{\perp}\right|\left|\Delta_{\perp}\right| \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right)$
$\times \mathfrak{R} \mathfrak{e}\left[\left\{\mathcal{H}_{g}^{(1) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1) *}+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}}\left(\mathcal{H}_{g}^{(2) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2) *}\right)\right\} \mathcal{L}_{g}+\left(\mathcal{E}_{g}^{(1) *}+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2) *}\right) \frac{\mathcal{O}}{2}\right]$
"Compton Form Factors":

$$
\begin{aligned}
& O(x, \xi) \equiv \int d^{2} \widetilde{k}_{\perp} \frac{\widetilde{k}_{\perp}^{2}}{M^{2}} F_{1,2}\left(x, \xi, \widetilde{\Delta}_{\perp}=0\right) \\
& \mathcal{O}(\xi)=\int_{-1}^{1} d x \frac{x O(x, \xi)}{(x-\xi+i \epsilon)^{2}(x+\xi-i \epsilon)^{2}}
\end{aligned}
$$

Probing gluon OAM through exclusive dijet production

Not the end of the story:

Probing gluon OAM through exclusive dijet production

Scattering amplitude

Not the end of the story:

- Interference between unpolarized $\&$ helicity $\mathbf{G P D}(z=1 / 2)$:
$\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu} A_{\nu}=\frac{2^{10} \pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{e m} e_{q}^{2} \frac{\left(1-\xi^{2}\right) \xi Q^{2}}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}}\left|l_{\perp} \| \Delta_{\perp}\right| \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right) \mathfrak{R e}\left[\left(\mathcal{H}_{g}^{(1) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1) *}\right)\left(\tilde{\mathcal{H}}_{g}^{(2)}-\frac{\xi^{2}}{1-\xi^{2}} \tilde{\mathcal{E}}_{g}^{(2)}\right)\right]$

Probing gluon OAM through exclusive dijet production

Scattering amplitude

Not the end of the story:

- Interference between unpolarized $\boldsymbol{\&}$ helicity $\operatorname{GPD}(z=1 / 2)$:

Helicity GPD

Helicity contributes to the same angular modulation as that of OAM

DSA is a simultaneous probe of gluon OAM \& it's helicity

Probing gluon OAM through exclusive dijet production

Probing gluon OAM through exclusive dijet production

Numerical estimate of cross section

Ingredients for non-perturbative functions

$$
\text { OAM } \begin{aligned}
\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu} & =-\frac{2^{10} \pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{e m} e_{q}^{2} \frac{(1+\xi) \xi Q^{2}}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}}\left|l_{\perp} \| \Delta_{\perp}\right| \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right) \\
& \times \mathfrak{\Re e}\left[\left\{\mathcal{H}_{g}^{(1) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1) *}+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}}\left(\mathcal{H}_{g}^{(2) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2) *}\right)\right\} \mathcal{L}_{g}+\left(\mathcal{E}_{g}^{(1) *}+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2) *}\right) \frac{\mathcal{O}}{2}\right]
\end{aligned}
$$

$$
\text { Helicity } \begin{aligned}
\int d \phi_{\perp_{\perp}} L^{\mu \nu} A_{\mu} A_{\nu} & =\frac{2^{10} \pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{e m} e_{q}^{2} \frac{\left(1-\xi^{2}\right) \xi Q^{2}}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}}\left|l_{\perp}\right|\left|\Delta_{\perp}\right| \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right) \\
& \times \mathfrak{R e}\left[\left(\mathcal{H}_{g}^{(1) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1) *}\right)\left(\tilde{\mathcal{H}}_{g}^{(2)}-\frac{\xi^{2}}{1-\xi^{2}} \tilde{\mathcal{E}}_{g}^{(2)}\right)\right]
\end{aligned}
$$

Probing gluon OAM through exclusive dijet production

Numerical estimate of cross section

Ingredients for non-perturbative functions

- Neglect contributions from $\left(E_{g}, \tilde{E}_{g}\right), F_{1,2} \longrightarrow$ Very simple formula

$$
\text { OAM } \begin{aligned}
\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu} & =-\frac{2^{10} \pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{e m} e_{q}^{2} \frac{(1+\xi) \xi Q^{2}}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}}\left|l_{\perp}\right|\left|\Delta_{\perp}\right| \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right) \\
& \times \mathfrak{\Re e}\left[\left\{\mathcal{H}_{g}^{(1) *}\right.\right.
\end{aligned}
$$

$$
\text { Helicity } \begin{aligned}
\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu} A_{\nu} & =\frac{2^{10} \pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{e m} e_{q}^{2} \frac{\left(1-\xi^{2}\right) \xi Q^{2}}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}}\left|l_{\perp}\right|\left|\Delta_{\perp}\right| \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right) \\
& \times \mathfrak{R e}\left[(\mathcal { H } _ { g } ^ { (1) * }) \left(\tilde{\mathcal{H}}_{g}^{(2)}\right.\right.
\end{aligned}
$$

Probing gluon OAM through exclusive dijet production

Numerical estimate of cross section

Ingredients for non-perturbative functions

- Neglect contributions from $\left(E_{g}, \tilde{E}_{g}\right), F_{1,2} \longrightarrow$ Very simple formula
- Model $\left(H_{g}, \tilde{H}_{g}\right)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)

$$
\binom{H_{g}(x, \boldsymbol{\xi})}{\tilde{H}_{g}(x, \boldsymbol{\xi})}=\int_{-1}^{1} d \beta \int_{-1+|\beta|}^{1-|\beta|} d \alpha \delta(\beta+\boldsymbol{\xi} \alpha-x) \times \frac{15}{16} \frac{\left[(1-|\beta|)^{2}-\alpha^{2}\right]^{2}}{(1-|\beta|)^{5}} \times\left\{\begin{array}{l}
\beta G(\beta) \\
\beta \Delta G(\beta)
\end{array}\right.
$$

Probing gluon OAM through exclusive dijet production

Numerical estimate of cross section

Ingredients for non-perturbative functions

- Neglect contributions from $\left(E_{g}, \tilde{E}_{g}\right), F_{1,2} \longrightarrow$ Very simple formula
- Model $\left(H_{g}, \tilde{H}_{g}\right)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)

$$
\binom{H_{g}(x, \boldsymbol{\xi})}{\tilde{H}_{g}(x, \boldsymbol{\xi})}=\int_{-1}^{1} d \beta \int_{-1+|\beta|}^{1-|\beta|} d \alpha \delta(\beta+\boldsymbol{\xi} \alpha-x) \times \frac{15}{16} \frac{\left[(1-|\beta|)^{2}-\alpha^{2}\right]^{2}}{(1-|\beta|)^{5}} \times\left\{\begin{array}{l}
\beta G(\beta) \\
\beta \Delta G(\beta)
\end{array}>\bigcup_{\mathrm{AM} \mathbf{P D F s}}\right.
$$

Probing gluon OAM through exclusive dijet production

Numerical estimate of cross section

Ingredients for non-perturbative functions

- Neglect contributions from $\left(E_{g}, \tilde{E}_{g}\right), F_{1,2} \longrightarrow$ Very simple formula
- Model $\left(H_{g}, \tilde{H}_{g}\right)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:

Probing gluon OAM through exclusive dijet production

Numerical estimate of cross section

Ingredients for non-perturbative functions

- Neglect contributions from $\left(E_{g}, \tilde{E}_{g}\right), F_{1,2} \longrightarrow$ Very simple formula
- Model $\left(H_{g}, \tilde{H}_{g}\right)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:

1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$
L_{c a n}^{g}(x)=x \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime 2}}\left(H_{g}\left(x^{\prime}\right)+E_{g}\left(x^{\prime}\right)\right)-2 x \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime 2}} \Delta G\left(x^{\prime}\right)+\text { genuine twist-three }
$$

Probing gluon OAM through exclusive dijet production

Numerical estimate of cross section

Ingredients for non-perturbative functions

- Neglect contributions from $\left(E_{g}, \tilde{E}_{g}\right), F_{1,2} \longrightarrow$ Very simple formula
- Model $\left(H_{g}, \tilde{H}_{g}\right)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:

1. "OAM density": (Hatta, Yoshida, 1207.5332)

Probing gluon OAM through exclusive dijet production

Numerical estimate of cross section

Ingredients for non-perturbative functions

- Neglect contributions from $\left(E_{g}, \tilde{E}_{g}\right), F_{1,2} \longrightarrow$ Very simple formula
- Model $\left(H_{g}, \tilde{H}_{g}\right)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:

1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$
L_{\text {can }}^{g}(x) \stackrel{\substack{\text { WW } \\ \text { approx }}}{\approx} x \int_{x}^{1} \frac{d x^{\prime}}{x^{2}}\left(H_{g}\left(x^{\prime}\right)+E_{g}\left(x^{\prime}\right)\right)-2 x \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime 2}} \Delta G\left(x^{\prime}\right)+\text { genuing wist-three }
$$

2. Use the Double distribution approach to construct $x L_{g}(x, \xi)$ from $x L_{g}(x)$ (GPD-like approach)

Probing gluon OAM through exclusive dijet production

Numerical estimate of cross section
Realistic EIC kinematics

$\sqrt{\boldsymbol{s}}[\mathrm{GeV}]$	$\boldsymbol{Q}^{\mathbf{2}}\left[\mathrm{GeV}^{\mathbf{2}}\right]$	\boldsymbol{y}	$\boldsymbol{\xi}$
120	2.7		
	4.8	0.7	$\lesssim 10^{-3}$
	10.0		

Focus on:
$z=\bar{z}=\frac{1}{2}$

Probing gluon OAM through exclusive dijet production

DSA: $\left.\quad \int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu}\right|_{\delta \phi=0} \sim \mathfrak{R e}\left[\mathcal{H}_{g}^{(1) *}(\xi) \tilde{\mathcal{H}}_{g}^{(2)}(\xi)\right]-\mathfrak{R e}\left[\left\{\mathcal{H}_{g}^{(1) *}(\xi)+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+Q^{2} / 4} \mathcal{H}_{g}^{(2) *}(\xi)\right\} \mathcal{L}_{g}(\xi)\right]$

Probing gluon OAM through exclusive dijet production

DSA: $\left.\quad \int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu}\right|_{\delta \phi=0} \sim \mathfrak{R e}\left[\mathcal{H}_{g}^{(1) *}(\xi) \tilde{\mathcal{H}}_{g}^{(2)}(\xi)\right]-\mathfrak{R e}\left[\left\{\mathcal{H}_{g}^{(1) *}(\xi)+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+Q^{2} / 4} \mathcal{H}_{g}^{(2) *}(\xi)\right\} \mathcal{L}_{g}(\xi)\right]$

Probing gluon OAM through exclusive dijet production

Probing gluon OAM through exclusive dijet production

Cancellation expected between Helicity \& OAM at small \boldsymbol{x}

Cancellation expected between Helicity \& OAM at small \boldsymbol{x}

Unique opportunity to study interplay between

$$
\Delta G(x) \& L_{g}(x)
$$

which has been so far only studied theoretically!

$$
\begin{aligned}
& \left(\tilde{\mathcal{H}}_{g}^{(2)}(\xi)+\frac{q_{\perp}^{2}-Q^{2} / 4}{q_{\perp}^{2}+Q^{2} / 4} \mathcal{L}_{g}(\xi)\right) \\
& \quad \downarrow \\
& \Delta G(x) \\
& \downarrow
\end{aligned}
$$

Summary

Summary

- Gluon OAM related to the Wigner distribution

Summary

Summary

- Gluon OAM related to the Wigner distribution
- DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:

$$
\begin{aligned}
\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu} \sim & -\mathfrak{R e}\left[\left\{\mathcal{H}_{g}^{(1) *}(\xi)+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{H}_{g}^{(2) *}(\xi)\right\} \mathcal{L}_{g}(\xi)\right] \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right) \\
& +\mathfrak{R e}\left[\mathcal{H}_{g}^{(1) *}(\xi) \tilde{\mathcal{H}}_{g}^{(2)}(\xi)\right] \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right)
\end{aligned}
$$

Summary

Summary

- Gluon OAM related to the Wigner distribution
- DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:

$$
\begin{aligned}
\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu} \sim & -\mathfrak{R e}\left[\left\{\mathcal{H}_{g}^{(1) *}(\xi)+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{H}_{g}^{(2) *}(\xi) \mathcal{L}_{g}(\xi)\right] \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right)\right. \\
& +\mathfrak{R e}\left[\mathcal{H}_{g}^{(1) *}(\xi) \tilde{\mathcal{H}}_{g}^{(2)}(\xi)\right] \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right)
\end{aligned}
$$

Signature of gluon OAM is cosine angular modulation

Summary

Summary

DSA does not vanish for symmetric jet configurations $z=\bar{z}=\frac{1}{2}$

- DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:

$$
\begin{aligned}
\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu} \sim & -\operatorname{Re}\left[\left\{\mathcal{H}_{g}^{(1) *}(\xi)+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{H}_{g}^{(2) *}(\xi)\right\} \mathcal{L}_{g}(\xi)\right] \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right) \\
& +\operatorname{Re}\left[\mathcal{H}_{g}^{(1) *}(\xi) \tilde{\mathcal{H}}_{g}^{(2)}(\xi)\right] \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right)
\end{aligned}
$$

Signature of gluon OAM is cosine angular modulation

Summary

Summary

Summary

First realistic numerical calculation of observable sensitive to OAM@ EIC

Backup slides

Probing gluon OAM through exclusive dijet production

Numerical estimate of cross section

$$
Q^{2}=2.7
$$

Caveat:

- In practice, measurements are done in a window in z around $z=1 / 2$

Corrections of order $\sim(z-1 / 2)^{2}$ should be calculable in k_{t}-factorization approach

Probing gluon OAM through exclusive dijet production

Cross section

Jet azimuthal angle ($\phi_{q_{\perp}}$) integrated out

Integrate assuming a Gaussian form factor

(See Braun, Ivanov, 0505263)

[^0]: Yoshitaka Hatta, ${ }^{1}$ Bo-Wen Xiao, ${ }^{2}$ and Feng Yuan ${ }^{3}$

[^1]: Yoshitaka Hatta, ${ }^{1}$ Bo-Wen Xiao, ${ }^{2}$ and Feng Yuan ${ }^{3}$

