Extracting General Parton Distributions from exclusive measurements at the future EIC

UNIVERSITÀ DELLA CALABRIA

Salvatore Fazio Università della Calabria & INFN Cosenza

XXIX Cracow EPIPHANY Conference Cracow - January 16-19, 2023

Outline

- More than a decade of studies:
 - INT report (2010)
 - White Paper (2015)
 - Yellow Report (2020)
 - Detector pre-proposals (2021-22)
 - eP() Collaboration (> 2022)
- Presentation based on the work of many
 - Includes independent impact and performance studies
 - I will try to give appropriate credits

EIC Yellow Report Nucl.Phys.A 1026 (2022) 122447

ATHENA: JINST 17 (2022) 10, P10019 ECCE: arXiv:2209.02580 CORE: arXiv:2209.00496

INT Report arXiv:1108.1713

EIC Withe Paper Eur. Phys. J. A (2016) 52: 268

The nucleon (spin-1/2) has **four quark and gluon GPDs** (H, E and their polarized-proton versions \tilde{H} , \tilde{E}). Like usual PDFs, GPDs are non-perturbative functions **defined via the matrix elements of** well-defined **parton operators**:

$$\mathbf{F}^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{P}^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p \rangle |_{z^{+}=0,\mathbf{z}=0}$$

$$= \frac{1}{2\bar{P}^{+}} \left[\frac{H^{q}(x,\xi,t,\mu^{2})\bar{u}(p')\gamma^{+}u(p) + E^{q}(x,\xi,t,\mu^{2})\bar{u}(p')\frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m_{N}}u(p) \right]$$

S. Fazio (University of Calabria & INFN Cosenza)

Accessing GPDs

Re(A) related to D-term, "last global unknown property" of a hadron, related to distribution of forces inside the nucleon [M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33, no. 26, 1830025 (2018)]

Accessing GPDs in exclusive processes

4-momentum transfer at the *p* vertex:

DVCS:

- Very clean experimental signature
- No VM wave-function uncertainty
- Hard scale provided by Q²

HEMP & TCS:

- Uncertainty of wave function
- J/Psi \rightarrow direct access to gluons, $c\overline{c}$ pair produced via quark(gluon)-gluon fusion
- Light VMs → quark-flavor separation
- Psedoscalars → helicity-flip GPDs
- TCS \rightarrow Re(A)

Scattered proton measurement

Note:

High energy colliders (HERA, Tevatron, LHC, RHIC) use Roman Pots to detect these protons

→ RPs are high resolution movable small tracking detectors (Si strips, Si pixels...), a crucial component

- \rightarrow Magnets aperture limits larger angles acceptance
- ightarrow Smaller angles acceptance limited by beam divergence and emittance
- ightarrow rule of thumb keep 10s between RP and beam

DVCS at the EIC

Comprehensive EIC studies

- Signal extraction "a la HERA"
- xSec meas.: Specific requirements to suppress BH
 - \rightarrow keep BH/sample below 60% at high energies
- Radiative Corrections evaluated
- detector acceptance & smearing
- t-slope: b=5.6 compatible with H1 data
- |t|-binning is (3*resolution)
- 5% systematic uncertainties

EIC: the first machine to measure cross sections and asymmetries

Only possible at EIC: from valence quark region, deep into the sea!

BH contamination

(2.51> Special selection criteria can be optimized to suppress BH below 80%

• But... more problematic at lower energies and larger *y*, in some *x*-*Q*² bins

Generator: MILOU

Now confirmed by simulations with the novel EpIC generator

S. Fazio (University of Calabria & INFN Cosenza)

Initial state radiation

Photon collinear to the incoming beam and goes down the beam line

→this contribution can only be estimated via MC
 →this causes a correction of the kinematics (x and Q²) and some systematic uncertainty

Fraction of ISR events for three Q²-bins vs. x for two EIC beam energy combinations

- ONLY 15% of the events emit a photon with > 2% energy of the incoming electron
- ISR photons with $E_{\gamma} < 0.02 E_e$ do not result in a significant correction for the event kinematics

DVCS – differential cross section

 $L = 10 f b^{-1}$

EIC White Paper

- L = 10 fb⁻¹ per energy configuration
- **Measurement dominated by systematics**
- Fine binning in a wide range of x-Q² needed for **GPDs**
- **Assumed t-range:** 0.03 < |t| (GeV²) < 1.6
- Fourier transform of $d\sigma/dt \rightarrow$ partonic profiles

S. Fazio (University of Calabria & INFN Cosenza)

DVCS – Transverse T. Spin Asymmetry

E.C. Aschenauer, S. F., K. Kumerički, D. Müller [JHEP09(2013)093]

$$\propto \sqrt{\frac{-t}{4M^2}} \Big[F_2(t) H(\xi,\xi,t,Q^2) - F_1(t) E(\xi,\xi,t,Q^2) + ... \Big]$$
 Access

to orbital angular momentum through "Ji sum rule"

[X.D. Ji, Phys. Rev. Lett. 78, 610 (1997)]

$$\sum_{q=u,d,s} J^q \left(Q^2 \right) + J^G \left(Q^2 \right) = \frac{1}{2}\hbar$$

 $L=100fb^{-1}$

DVCS-based spatial imaging

E.C. Aschenauer, S. F., K. Kumerički, D. Müller [JHEP09(2013)093]

A global fit over all mock data was done, based on: [Nuclear Physics B 794 (2008) 244–323]
 Known values q(x), g(x) are assumed for H^q, H^g (at t=0 forward limits E^q, E^g are unknown)

DVCS-based spatial imaging

E.C. Aschenauer, S. F., K. Kumerički, D. Müller [JHEP09(2013)093]

Impact of EIC (based on DVCS only): \checkmark Excellent reconstruction of H^{sea} , and H^{g} (from $d\sigma/dt$)

✓ Reconstruction of sea-quarks GPD E

niversity of Calabria & INFN Cosenza)

Take this with a grain of salt! 0

- Depends on models, simulations...
- It's a proof of principle ۲ to show accuracy of a possible extraction

Much still to be investigated!

Gluon GPD H can be much improved by including J/ ψ

[0.99, 1.00]

[0.97.0.99] [0.94, 0.97]

[0.90.0.94] [0.80, 0.90] [0.70, 0.80]

[0.60, 0.70]

[0.50, 0.60]

[0.40, 0.50] [0.30, 0.40]

[0.20, 0.30]

- Access to gluon GPD E \rightarrow orbital momentum (Ji sum rule)
- Flavor Separation of GPDs (VMP • and/or DVCS on deuteron)
- Nuclear imaging (modification of • GPDs in p+A collisions)

DVCS vs exclusive π^0

²⁵⁰-10 x 100

10⁶

10⁵

 10^{3}

C

L=10 fb⁻¹

preliminary

n

10 x 100

L=10 fb⁻¹

preliminary

E [GeV]

DVCS

Pi0

DVCS

Pi0

ΡίΟ γ

 \Box Why we worry about a background from " $\pi^0 \rightarrow \gamma \gamma$ "?

- 1) The two decay photons could merge into one
- 2) One of the photons could go out of the acceptance

Take away message:

- π^{0} x-sec lower than signal (DVCS)
- Min 2γ angle: ~0.2 deg

EIC Yellow Report

Detector pre-proposals – DVCS/TCS

Observables: $d\sigma/dt$; A_{LU} ; A_{UT} **Asymmetries (DVCS & TCS):** GPDs via amplitude-level interference with Bethe-Heitler

Key:

- Acceptance (including FF)
- γ/π^0 separation in ECAL
- t lever arm in FF spectrometers

Timelike Compton Scattering (TCS) $\gamma p \rightarrow \gamma^* p \ (\gamma^* \rightarrow l^+ l^-)$ • Q': invariant mass of $l^+ l^-$ • $\tau = Q^2 = (s - m_p^2)$ equivalent to x_B

Imaging gluons with J/ψ

Challenges of VMP

 $\int L = 10 \, f b^{-1}$

EIC White Paper

- Uncertainty on wave function
- measuring muon vs electron decay channel
- We simulated the J/ψ cross section, extracted the Fourier transform but never included it on GPDs fits
- Measurement dominated by systematics at low |t|
- Large-|t| spectrum would benefit of collecting more luminosity

Only possible at EIC: from valence quark region, deep into the sea!

J/w signal vs background

EIC Yellow Report

Studies by: Sylvester Joosten (ANL)

Comparisons of **signal** and **di-lepton background** (empty circles)

- Basic analysis cuts applied
- Electroproduction (Q²>1GeV²): Di-lepton background under control at all energies for heavy mesons [J/ψ; Y]
- photoproduction (Q²~0): at lower energies, di-lepton higher that signal at backward rapidities: η<-2 (J/ψ) and η<-3 (Y)

Detector Proposals- VMs

$\vec{e} + \vec{p} \rightarrow e + p + \vec{V}$

VMs invariant mass at CORE

Y Photopoduction near threshold and electroproduction ($Q^2 < 1 \text{ GeV}^2$) -> origin of *p*-mass

Key:

- Acceptance and low material for VM decay leptons
- Resolution of lepton pair inv. mass
- Muon id
- Scattered electrons over full kinem.
- *t*-lever arm in FF spectrometers

Detector Proposals- DVCS

- Plot made with full simulation
- DVCS events simulated using EpIC

Observables:

 $d\sigma/dt$; A_{LU}; A_{UT}

Asymmetries (DVCS & TCS):

GPDs via amplitude-level interference with Bethe-Heitler

Key:

Acceptance (including FF)

t-lever arm in FF spectrometers

 γ/π^0 separation in ECAL

Study of neutrons with light nuclei

- Possibility to study neutron structure
- > DVCS on neutron compared to proton is important for flavor u/d separation DVCS on incoherent D (D breaks up) but coherent on the neutron, the "double tagging" method
 - Tag DIS on a neutron (by the ZDC)
 - Measure the recoil proton momentum
 - Gives you a free neutron structure, not affected by final state interactions

See talk by A. Jentsch

DVCS with ⁴He

Process which can give understanding of EMC effect, and tomographic view of nucleons.

- $\circ~$ Pure DVCS illustrated by "Handbag Mechanism"
- TOPEG MC generator: by Perugia+Orsay
- Detector simulation: EpIC with fun-4-all
- Electron detection (tracker):
 - electron: # of tracks in internal Si tracker = 1
 - electron acceptance ~= 88.3%
- \circ Photon detection (ECAL):
 - # ele tracks = 1 && # ECAL hits > 0 && max cluster energy: E_{max} > 250 MeV
 - photon acceptance ~= 86.1%

Study by Gary Penman

The EpIC generator: a new tool!

See Talk by V. Martinez-Fernandez

- o Authors: E.C. Achenauer, V. Batozskaya, S.F., K. Gates, H. Moutarde, D. Sokhan, H. Spiesberger, P. Sznajder
 - Eur. Phys. J. C 82 (2022) 9, 819
- EpIC: an event generator for exclusive reactions
 - Named after EIC and the philosopher *Epicurus*
 - we may have inspired the name for EIC detecor-1 $\textcircled{\odot}$
- EpIC uses the PARTONS framework (<u>http://partons.cea.fr</u>), takes advantage of:
 - two state-of-art GPD models (GK, KM20)
 - flexibility for adding new models
- \circ Multiple channels: DVCS, TCS, π^0

- Initial and final state radiative corrections are implemented based on the collinear approximation
- flexibility for adding all exclusive mesons

The near future: impact studies!

- We aim at performing new impact studies for extracting GPDs, similarly to what was done in JHEP09(2013)093, now with:
 - geant-4 simulation of the ePIC detector response and realistic event reconstruction
 - BH subtraction in xsec and π^0 background studies
 - state of art models: GK and KM20
 - we should reassess pi0 with a full simulation
- Status of ePIC detector simulation:
 - full GEANT4 bases simulation exists: DD4HEP, Jana2 (EICRecon) ...
- EpIC generator:
 - fully replaces MILOU & MILUO 3D. Maintained, using state or art models
 - Anyone encouraged to use it: arXiv:2205.01762
 - Future development: add more mesons, light ions (D, He) including incoherent D
- Everyone is welcome to collaborate to physics studies! (even if not joining the ePIC coll.) S. Fazio (University of Calabria & INFN Cosenza) 24