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How do classical computers work?

Classical computers are 
made from simple 
individual units

A transistor is the simplest 
form of data processing unit 

in computers

-> just a switch to block or 
open the path for 

information coming through

-> information 0 or 1

Reaching 
classical limit 
with single 

atom transistor
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complexity of system grows 
exponentially with # bits

that way one can perform 
calculations, e.g. adding up two 
numbers that are encoded in 

binary code

once you can add, you can 
multiply etc

once you scale up, you can perform outstandingly difficult 
calculations, e.g simulate evolution of our Universe
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6+10 Binary

define algebraic 
procedure on new 

representation
obtain result in 

new 
representation

convert into 
different 

representation

10000

convert back

16

• Note, final solution manifold consists of 2^5 states

• However, convergence to ‘correct’ result very fast,  
as algorithm provides most direct path to solution state

• Puzzling: For this example, algebraic operation on original representation 
much simpler for human mind. 

Example for addition in binary code on the algorithmic level:
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Protein-folding and Levinthal’s Paradox
• Elongated proteins fold to same state within 
microseconds

• Some proteins have 3    conformations    300

• Levinthal’s Paradox (1969):  
Sequential sampling of states would take 
longer than lifetime of Universe (even if 
only nanoseconds per state spent)

• Solution: No sequential sampling, but 
rapid descend into the potential minimum. 
In  proteins due to protein folding 
intermediates

Solution of mathematical problem can 
be found quickly if encoded in ground 

state of complex system 

Optimisation is Life
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Digital vs Analog simulations

• Digital: Express problem in digits and numbers. Level 
of abstraction, but results in universal computing

• Analog: Encode problem in the constituents of the 
system. Requires match between engineerable 
interactions and model

Krakow                 Kolloquium      Michael Spannowsky             19.10.2022                   6



“Nature is quantum […] 
so if you want to 

simulate it, you need a 
quantum computer”  
- Richard Feynman 

(1982)

Easily said … so how do we do that?

Beginning of a scientific journey that accelerated 
in recent years tremendously….
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Private and Public Sector is placing big bets on Quantum Computing

Significant financial investment 
expected across many sectors

In US, already now higher financial 
investment from private than public sector

All national and international labs have QC programmes  
(Fermilab, BNL, LBNL, CERN, …)
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Basic motivation for Quantum Computing

“Can we take the quantum mechanical properties of 
microscopic objects and scale them up to larger quantum 

systems while harnessing their quantum prowess?”

Disclaimer: nobody today thinks that quantum computers 
will universally replace classical computers

For some specialised task quantum supremacy has been shown
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Superposition

Entanglement

Tunneling

Heisenberg 
principle

Quantisation

The quantum mechanical principles on which the algorithms 
have to rely to have a chance for a quantum advantage are

Required to go beyond classical computing
Configuration 

space sampling
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Classical result double slit double slit result for quantum object

highest probability in the 
middle (behind shield)

Interference pattern arises even if electrons are 
emitted one at a time

• Shows that electrons (or any quantum 
mechanically described object) is described 
by a wave.

measurement collapses wave function, i.e. the 
electrons position is defined by one number x
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Thus, need transition form classical to quantum:

bits qubits

gates quantum 

gates 

algorithms 

Classical Quantum

quantum algorithms
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How can these quantum principles help to 
improve computations?

quantum (superposition)  
can be in all states at same time

classical

system is in one state out of 16

• A measurement of the quantum system after the computations are performed results in 
the observation of one of these configurations, with a probability that corresponds to 
the computational processes

• Computations can be performed simultaneously on the whole configuration 
space. -> can be much faster than classically

• Configuration space here 16=2^4 states.

Krakow                 Kolloquium      Michael Spannowsky             19.10.2022                   14



•  General structure of any QC algorithm:

• Operator expressed in terms of individual gates

operator acts on  
Hilbert space states
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Û (198)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)
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statistical statement 
need to evaluate often

Need to encode Hilbert 
space and operator suitable 

for quantum system

• Often ‘Trotterization’ (Suzuki-Trotter approximation) needed:
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|0⟩
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ϕ

θ

Apply Unitary rotation :U3 |0⟩ U3(θ, ϕ, λ) =
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Rotation about the Bloch Sphere and state parametrisation

Extending this to a system of  qubits forms a -dimensional Hilbert SpaceN 2N

Krakow                 Kolloquium      Michael Spannowsky             19.10.2022                   16



Quantum Gate

initialisation
operations on qubits

results in output of superpositions

We then measure one specific outcome. Have to repeat measurement to statistically 
evaluate how likely each outcome is (by calculating and measuring several times). 

Since we work only with probabilities, we measure only probabilities
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Quantum Gate

quantum gate and multi slit experiment are conceptually identical

While operating one cannot see how the 
gate works. Only at the end one can 

measure the outcome

(box is closed during operations)
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Galton Board as analogy for 
Quantum Computer
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Technical challenges of a quantum computer

60

• Many quantum paradigms require system to be perfectly isolated (shielded 
from outside) to maintain coherence - for as long as the algorithm takes 
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The road to Quantum Advantage

IBM 400 qubits in 2021
IBM 1000 qubits in 2022
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Popular Quantum Computing paradigms
Quantum computing has long and distinguished history but is only now becoming practicable.

Type Discrete Gate 
(DG)

Continuous Variable 
(CV)

Quantum Annealer 
(QA)

Property Universal (any quantum 
algorithm can be expressed)

Universal 
- 

GBS non-Universal

Not universal —  
certain quantum systems

Advantage most algorithms and tech 
support

uncountable Hilbert 
(configuration) space

continuous time quantum 
process

How? IBM - Qiskit  
~ 50 Qubits Xanadu DWave - LEAP  

~5000 Qubits

What?
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HEP

Data analysisParticle Collision  
Calculations

Quantum 
Field Theory

New 
physics 
searches

Matter

antimatter

asymmetry

Multi 
particle 
dynamics
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HEP application focused quantum simulations

• Sign problem - profound challenge for simulation of field theories

• Can arise in presence of 
chemical potential, 
topological terms, multi-
particle dynamics, …

Partition function

• Example chemical potential

For complex determinant 
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HEP application focused quantum simulations

•  Importance sampling

Interpretation of 

as probability weight

• Highly oscillatory integrands

near cancellation of pos and neg contribs
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HEP application focused quantum simulations

• SU(2) non-Abelian gauge field (1d) - calculation of plaquette operator
[Klco, Stryker, Savage ’19]

•  U(1) lattice gauge theory - real-time propagation and collisions in 2d 
[Lewis, Woloshyn ’19]

•  Simulate Lattice Gauge Theories with continuous gauge groups in 
Hamiltonian formulation [Haase, Dellantonio, Celi, Paulson, Kan, Jansen, 

Muschik ’20]

Kogut-Susskind formulation

Gauge group G

• Real-time evolution on quantum computer 
can avoid sign problem

• Sigma model with topological term [Araz, Schenk, MS ’22]
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Calculation of particle collisions

• hard process and parton shower most time consuming parts 
of event simulation - though carries most information!

• hard process calculated using modern helicity amplitude 
techniques and parton showers using perturbative QCD 
resummation techniques. 

Event generators: Pythia, Herwig, Sherpa, …
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Parton shower

Sudakov factors for non-emission probability

Total Sudakov, i.e. non-emission prob

Splitting functions:

Collinear splittings are relatively easy to implement in a quantum circuit, when compared to soft

splittings. This is because the only free parameter is x from Equation 2.5. Section 3.2 outlines how this

is done for the algorithm presented here.

3 Collinear Parton Shower Algorithm

A novel method for simulating a QCD parton shower has been constructed using IBM Quantum Expe-

rience [1] software and hardware. The quantum circuit has been implemented to simulate a 2-step QCD

parton shower with collinear splittings only. Section 3.1 discusses the splitting functions and probability

calculations which are implemented in the circuit outlined in Section 3.2. Section 3.4 shows a comparison

to theoretical probability calculations. Appendix A contains a glossary of quantum logic gates used in

this algorithm.

3.1 Theoretical Outline of Shower Algorithm

The goal is to create the foundation for the construction of a general quantum algorithm that can

simulate a full QCD parton shower. To comply with the current capabilities of public access quantum

computers and simulators provided by IBM Quantum Experience [1], the algorithm presented here uses

a simplified model consisting of one flavour of quark, and a gluon. This reduces the number of qubits

needed and the algorithm can be run on the IBM Q 32 Qubit Quantum Simulator [2]. In order to

further reduce the number of required qubits, only collinear splittings are considered within the model.

By neglecting the soft-limit, one does not have to keep track of the kinematics of the particles in the

system. The algorithm is discretised into individual steps. An emission can occur in each step, and the

probabilities are calculated from the splitting functions and Sudakov factors. In order to meet the 32

qubit limit, the algorithm has been limited to 2 steps, but it is generally extendable to a larger number of

steps. The possible diagrams for the 2 step algorithm, with the maximum number of final state particles,

are displayed in Figure 2.
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Figure 2: Tree level parton shower diagrams for 2 step discretised quantum algorithm.

To calculate the emission probabilities in the algorithm, the collinear splitting functions outlined by

Marzani, Soyez and Spannowsky in Reference [8] have been used. A consequence of the collinear limit
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Δtot(z1, z2) = Δng
g (z1, z2)Δ

nq
q (z1, z2)Δ

nq
q (z1, z2)

Particle cascade in collinear limit 
given by splitting functions and 
non-emission probabilities
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Update Gate - 
Controls from 

history register 
to update the 

final particles in 
the particle 

register 

• Circuit consists of: particle registers, emission registers, and history registers and uses a 
total of 31 qubits

Circuit for parton shower algorithm

Ue =
Δtot(z1, z2) − 1 − Δtot(z1, z2)

1 − Δtot(z1, z2) Δtot(z1, z2)
Uh =

1 −
Pk→ij(z)
Ptot(z) −

Pk→ij(z)
Ptot(z)

Pk→ij(z)
Ptot(z) 1 −

Pk→ij(z)
Ptot(z)

29
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•  More powerful algorithms using Quantum Walks

• Conversely to classical algorithm, quantum algorithm keeps the entire 
shower history in wave function

measurement by projecting onto specific state
whether quantum algorithm advantageous over classical 
depends on technical factors and hardware specs

Here, up 
to 16 

emissions

• Helicity amplitudes formalism and simplified parton shower algorithm covered 
in [Bepari, Malik, MS, Williams ’20]

[Bepari, Malik, MS, 
Williams ’21]

But 
practically 

not 
limited

Circuit depth 
grows linearly 
with #steps

#steps grows 
exponentially with 

#qubits

• Scales as q = 2 log2(N + 1) + 6
• Including kinematics see [Gustafson, Prestel, MS, Williams ’22]
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Data analysis for high-energy physics

Candidate event tth ATLAS

Big Data at the LHC

ATLAS/CMS 200 events/s 
passing triggers

ATLAS/CMS 2 PB/year of data

• Highly complex data

• Need sophisticated automated 
data analysis methods to 
discriminate signal from 
backgrounds
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Regression Classification

Clustering Autoencoder

Supervised

Unsupervised

Fine-grained 
small net

Large net

[Blance, MS ’21]for quantum continuous 
variable algorithm see 
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Classical Neural Network recap

1. an adaptable complex system that 
allows approximating a complicated 
function

2. the calculation of a loss function in the 
output layer which is used to define 
the task the NN algorithm should 
perform by minimising this function

3. a way to update the 
network continuously while 
minimising the loss function, 
e.g. backpropagation

Very powerful principle which NNs are designed to exploit

Difficult to keep all in quantum system - but not impossible? stay tuned!

=
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Quantum Machine Learning with a Variational Quantum Circuit

state preparation

angle encoding

angles define Hilbert space

3.2. Structure of a Variational Quantum Classifier 73

unitary gate

Ry(◊) =

Q

cca
cos(◊/2) ≠sin(◊/2)

sin(◊/2) cos(◊/2)

R

ddb . (3.2.4)

3.2.2 Model Circuit

Given a prepared state, |xÍ, the model circuit, U(w), maps |xÍ to a vector |ÂÍ =

U(w)|xÍ. In turn, U(w) consists of a series of unitary gates and can be decomposed

as

U(w) = Ulmax(wlmax)...Ul(wl)...U1(w1) , (3.2.5)

where every Ul(wl) is a layer in the circuit, with its corresponding weight parameters,

and lmax is the maximum number of layers. These are constructed from a set of single

and two-qubit gates which will evolve the state |xÍ. The gates include parameters

that will be trained during the optimisation of the network. A single qubit gate can

be written as a 2 ◊ 2 unitary matrix with the form

G(–, —, “, „) = ei„

Q

cca
ei—cos(–) ei“sin(–)

≠e≠i“sin(–) e≠i—cos(–)

R

ddb . (3.2.6)

We can neglect ei„ as it only gives rise to a global phase that has no measurable

e�ect. Thus, the parameters –, —, and “ are all that is needed to parametrise a

single qubit gate.

The circuit we use in our model in shown is Fig. 3.2. This is constructed using a

rotation gate, R, and CNOT1. The rotation gate is a single qubit gate that is applied

1 The controlled-NOT (CNOT) gate is a quantum register that can be used to entangle and
disentangle quantum states. The matrix representation of a CNOT gate is

CNOT =

Q

cca

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

R

ddb .

single 
qubit 
gate
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rotation gate, R, and CNOT1. The rotation gate is a single qubit gate that is applied

1 The controlled-NOT (CNOT) gate is a quantum register that can be used to entangle and
disentangle quantum states. The matrix representation of a CNOT gate is

CNOT =

Q

cca

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

R

ddb .
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unitary gate
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Q
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sin(◊/2) cos(◊/2)

R

ddb . (3.2.4)

3.2.2 Model Circuit

Given a prepared state, |xÍ, the model circuit, U(w), maps |xÍ to a vector |ÂÍ =

U(w)|xÍ. In turn, U(w) consists of a series of unitary gates and can be decomposed

as

U(w) = Ulmax(wlmax)...Ul(wl)...U1(w1) , (3.2.5)

where every Ul(wl) is a layer in the circuit, with its corresponding weight parameters,

and lmax is the maximum number of layers. These are constructed from a set of single

and two-qubit gates which will evolve the state |xÍ. The gates include parameters

that will be trained during the optimisation of the network. A single qubit gate can

be written as a 2 ◊ 2 unitary matrix with the form

G(–, —, “, „) = ei„
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e�ect. Thus, the parameters –, —, and “ are all that is needed to parametrise a

single qubit gate.

The circuit we use in our model in shown is Fig. 3.2. This is constructed using a

rotation gate, R, and CNOT1. The rotation gate is a single qubit gate that is applied

1 The controlled-NOT (CNOT) gate is a quantum register that can be used to entangle and
disentangle quantum states. The matrix representation of a CNOT gate is

CNOT =
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Figure 3.2: Circuit diagram for our variational quantum classifier
model made of two qubits in each of the two layers.

postprocessing step gives a great deal of flexibility to the user to tackle the problem

how they see fit. Generally, it will include the addition of any bias terms, the

drawing of a classification decision boundary, the calculation of a loss function and

the optimisation procedure.

The bias term b will also be a trainable parameter. Its introduction increases model

flexibility. We can write the output of our model, before drawing a decision boundary,

by combining the expectation value of the model circuit fi(w, x) and the bias term b

f(w, b, x) = fi(w, x) + b . (3.2.9)

A decision boundary is drawn to seperate the value of f(w, b, x) into the two classes.

The binary classification result, cls(w, b, x), is calculated as

cls(w, b, x) =

Y
___]

___[

1 if f(w, b, x) > 0 ,

≠1 else .

(3.2.10)

Following this, the loss function is calculated and the optimisation procedure is

carried out. This will be discussed in Section 3.3.

n corresponds 
to # features

quantum system which can be parametrised by

| i = ↵|0i + �|1i = cos
✓

2
|0i + ei'sin

✓

2
|1i =

✓
cos ✓2

sin ✓
2e

i�

◆
. (2.2)

The state of Eq. (2.2) can be visualised as a vector on the Bloch sphere. By performing op-

erations on a qubit one rotates the vector on the Bloch sphere. Circuits can be constructed

to act on numerous qubits, where a 2-qubit state can be described as a tensor product of

two 1-qubit states

| i = ↵00|00i + ↵01|01i + ↵10|10i + ↵11|11i . (2.3)

The model circuit is constructed from gates that evolve the input state. The circuit

is based on unitary operations and depends on external parameters which will be adjusted

during training.

Finally, the postprocessing step measures the state. Traditionally, we measure the

output of the first qubit. This step will also include any classical postprocessing we may

wish to include.

2.1 State Preparation

Before applying the model circuit of our classifier, we use a state preparation circuit Sx to

encode the input data into a quantum state. Sx acts on the initial state |�i

x 7! Sx|�i = Sx|0i⌦n = |xi , (2.4)

where |�i = |0i⌦n. The number of qubits n is defined by the number of features in our

dataset.

The parametrisation of the encoding can a↵ect the decision boundaries of the classifier

and can therefore be chosen in a form that suits the problem at hand [44]. Here, we use

the so-called angle encoding

|xi =
nO

i=1

cos(xi)|0i + sin(xi)|1i , (2.5)

where x = (x0, ...xN )T . Practically, this amounts to using the input data, x, as angles in

a unitary quantum gate. We take the state preparation circuit as the unitary gate

Ry(✓) =

 
cos(✓/2) -sin(✓/2)

sin(✓/2) cos(✓/2)

!
. (2.6)

2.2 Model Circuit

Given a prepared state, |xi, the model circuit, U(w), maps |xi to another vector | i =

U(w)|xi. In turn U(w) consists of a series of unitary gates and can be decomposed as

U(w) = Ulmax(wlmax)...Ul(wl)...U1(w1) , (2.7)

where every Ul(wl) is a layer in the circuit, with its corresponding weight parameters, and

lmax is the maximum number of layers. These are constructed from a set of single and

– 5 –

two qubit gates which will evolve the state |xi. The gates include parameters that will be

trained during the optimisation of the network. A single qubit gate can be written as a

2 ⇥ 2 unitary matrix with the form

G(↵,�, �,�) = ei�
 

ei�cos↵ ei�sin↵

�e�i�sin↵ e�i�cos↵

!
. (2.8)

We can neglect ei� as it only gives rise to a global phase that has no measurable e↵ect.

Thus, the parameters ↵, �, and � su�ce to parametrise a single qubit gate.

We use a rotation gate, R, and CNOT in our model. The rotation gate is a single

qubit gate that is applied to both qubits in our system. This gate is designed to rotate our

state based on a set of learnable parameters w = (↵, �, �)

R(↵, �, �) = RZ(�)RY (�)RZ(↵) =

 
e�i(↵+�)cos(�/2) �e�i(↵��)sin(�/2)

e�i(↵��)sin(�/2) ei(↵+�)cos(�/2)

!
(2.9)

The angles of Eq. 2.9 are a subset of the parameters in the weight vector w 2 Rn⇥3⇥l, where

n is the number of qubits and l is the number of layers in our network. This object, w, will

contain some of the parameters that will be learned during training time. The number of

qubits will mirror the number of features in our dataset whereas l is a hyperparameter we

can tune. In the circuit centric design we are using the number of qubits is held constant,

however, the model could be extended or other frameworks used for a more flexible network

design [9].

Each layer in our model contains two CNOT gates, a standard 2-qubit gate in quantum

computing with no learnable parameters. A CNOT, if used alongside a Hadamard gate,

could be used to introduce entanglement into our circuit. These gates flip the state of a

qubit based on the value of another control bit‡. Each gate in the layer uses a di↵erent

qubit as the control bit. The model circuit of the VQC used here is shown in Figure 2.

2.3 Measurement and Postprocessing

After applying U(w) to the initial state we need to measure its output. We do this by

applying the Pauli Z operator on the first qubit and taking the expectation value

E(�z) = h0|Sx(x)†U(w)†OU(w)Sx(x)|0i = ⇡(w, x) , (2.10)

where O = �z ⌦ I⌦(n�1). To obtain an estimate we run the circuit repeatedly. The number

of repetitions we do is known as the number of Shots (S).

‡
The controlled NOT (CNOT) gate is a quantum register that can be used to entangle and disentangle

quantum states. The matrix representation of a CNOT gate is

CNOT =

0

BBB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

CCCA
.

– 6 –

with

CNOT 
gate

to entangle/
disentangle 

states

2-layer Variational Quantum Circuit

[Blance, MS ’20]
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to both qubits in our system. This gate is designed to rotate our state based on a

set of learnable parameters w = (–, —, “)

R(–, —, “) = RZ(“)RY (—)RZ(–)

=

Q

cca
e≠i(–+“)cos(—/2) ≠e≠i(–≠“)sin(—/2)

e≠i(–≠“)sin(—/2) ei(–+“)cos(—/2)

R

ddb

(3.2.7)

The angles of Eq. (3.2.7) are a subset of all trainable parameters of the model and

make up the parameters in the weight vector w œ Rn◊3◊l, where n is the number

of qubits and l is the number of layers in our network. This object, w, will contain

some of the parameters that will be learned during training time. While the number

of qubits will mirror the number of features in our dataset, the number of layers in

the network, l, is a hyperparameter we can tune. In the circuit centric design we are

using, the number of qubits is held constant, however, the model could be extended

for a more flexible network design [94].

Each layer in our model contains two CNOT gates - a standard 2-qubit gate in

quantum computing with no learnable parameters. These gates flip the state of

a qubit based on the value of another control bit. Each gate in the layer uses a

di�erent qubit as the control bit.

3.2.3 Measurement and Postprocessing

After applying U(w) to the initial state we need to measure its output. We do this

by applying the Pauli Z operator on the first qubit and taking the expectation value

E(‡z) = È0|Sx(x)†U(w)†ÔU(w)Sx(x)|0Í = fi(w, x) , (3.2.8)

where Ô = ‡z ¢ I¢(n≠1). To obtain an estimate, we run the circuit repeatedly. The

number of repetitions we do is known as the number of shots S.

Classical postprocessing is applied to the expectation value of the circuit before

returning a final classifier output. Like in a classical neural network approach, the
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Figure 3.2: Circuit diagram for our variational quantum classifier
model made of two qubits in each of the two layers.

postprocessing step gives a great deal of flexibility to the user to tackle the problem

how they see fit. Generally, it will include the addition of any bias terms, the

drawing of a classification decision boundary, the calculation of a loss function and

the optimisation procedure.

The bias term b will also be a trainable parameter. Its introduction increases model

flexibility. We can write the output of our model, before drawing a decision boundary,

by combining the expectation value of the model circuit fi(w, x) and the bias term b

f(w, b, x) = fi(w, x) + b . (3.2.9)

A decision boundary is drawn to seperate the value of f(w, b, x) into the two classes.

The binary classification result, cls(w, b, x), is calculated as

cls(w, b, x) =

Y
___]

___[

1 if f(w, b, x) > 0 ,

≠1 else .

(3.2.10)

Following this, the loss function is calculated and the optimisation procedure is

carried out. This will be discussed in Section 3.3.
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3.3 Optimisation

As alluded to above, during training we aim to find values of w and b to optimise a

given loss function. This is analogous to a traditional neural network. In both cases,

the methods of optimisation you can perform are similar. For a quantum neural

network and a traditional neural network, we perform a forward pass of the model

and calculate a loss function. Then, we can backpropagate through the network

and update the trainable parameters. This is the equivalent of the third pillar of

machine learning, mentioned in Section 3.1.

During training we have chosen to use mean squared error (MSE) as the loss function1.

The allows us to measure a distance between the truth and our model’s predictions,

represented by the value of the function

L = 1
n

nÿ

i=1

Ë
ytruth

i ≠ f(w, b, xi)
È2

. (3.3.1)

We train our model using vanilla gradient descent and quantum gradient descent [103].

The latter is a quantum optimisation algorithm designed to be performed on a hybrid

network such as the model we have proposed.

3.3.1 Backpropagation

To perform backpropagation for a network with adjustable parameters ◊ = (w, b)

we must compute the gradient ˆ

ˆ◊
f . This is equivalent to computing the change of

the output of the network when varying ◊. The gradient over a quantum circuit

can be calculated using the parameter-shift rules [108,109]. Being able to calculate

gradients for a quantum circuit opens up the possibility of using gradient descent

methods to train our variational quantum circuit. The methodology is identical to

how optimisation and training techniques are performed on classical neural networks.

1As discussed in Chapter 1.1, the binary cross-entropy is a preferred measure for the loss function.
In this case, we find that the choice of BCE or MSE leads to similar results. As a result, we choose
to follow the choice for the loss function of Refs. [95,107]. On testing the di�erence, we find that
either loss function results in a model performance of around 70% accuracy.

for

Classification loss

could be RMSE, binary cross 
entropy or etc

Quantum network output:

label (signal, bkg)
supervised learning
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The parameter-shift rules provide the relation

ˆ

ˆ◊
f = r

5
f(◊ + s) ≠ f(◊ ≠ s)

6
, (3.3.2)

where the shift s = fi/4r. The value of r is an arbitrary normalisation factor which

we choose in our implementation to be r = 1/21. From Eq. (3.3.2) we can calculate

gradients over quantum gates by shifting their parameters. As the di�culty of

calculating ˆ

ˆ◊
f has been reduced to simply probing the quantum circuit at di�erent

parameter points, it is now possible to evaluate the gradient fast and e�ciently on

a quantum device.

3.3.2 From Classical to Quantum Gradient Descent

The geometry of the parameter space has a direct impact on the reliability and

e�ciency of an optimisation algorithm [110]. Therefore, a suitable choice of optim-

isation strategy is a key performance factor for a variational quantum circuit. It is an

open question as to what is the best form of parameter space to use and whether the

use of a traditional Euclidean geometry is appropriate for variational models [111].

For our problem, we propose to augment the vanilla gradient descent method, often

used in classical neural networks, with a quantum gradient descent method [103].

In vanilla gradient descent, the network parameters ◊t, at each iteration step t, are

updated to ◊t+1. The goal is to choose the parameters ◊t+1 such that the loss function

L(◊) is minimised. One approach is to update ◊t in the direction of the steepest

decline, ≠OL(◊), weighted by a learning rate ÷

◊t+1 = ◊t ≠ ÷OL(◊). (3.3.3)

However, this optimisation is performed on the geometry of an l2 vector space, which

will influence the performance of our model and how new parameters are found.

1The rule is similar to the traditional finite di�erences (FD) method of finding a derivative.
However, unlike the parameter-shift rules, FD is an approximation. Also, parameter-shift requires
a shift of fi/2 while the shift in a FD setup must be << 1.
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While all parameters are updated with the same step size, the rate at which the loss

function changes for each model parameter can vary by large amounts. By using

this form of gradient descent it is possible to miss the global minimum in the space

of the loss function.

An improvement would be to change the coordinate system to ensure the loss function

changes consistently with each step, for each parameter. Alternatively, one could

find a method that was invariant under re-parametrisation.

One way to address this problem is to use natural gradient descent, which makes

use of the Fisher Information Matrix [112, 113]. This is a classical extension to

vanilla gradient descent method. The parameters of a network (the weights and

biases) exist on a parameter space that has a Riemannian geometry. The Fisher

Information Matrix is the metric that defines this space. Since this metric includes

information on the geometric structure of the Riemannian space of the network

parameters, its inclusion into the gradient descent optimisation leads the network

to learn more e�ectively. In addition, it is invariant under re-parametrisation, and

thus advantageous in finding an e�ective parametrisation.

Algorithmically, natural gradient descent can be written as

◊t+1 = ◊t ≠ ÷F ≠1
OL(◊) , (3.3.4)

where F is the Fisher Information Matrix. In each optimisation step, the paramet-

ers are updated in the direction of steepest descent of the information geometry

rather than the Euclidean geometry. The inclusion of F ≠1 in Eq. (3.3.4) generally

improves the performance of the optimisation algorithm. In most classical deep

neural networks, calculating the inverse of a large matrix becomes prohibitively

expensive because of the computations involved. However, in our hybrid network,

which benefits from a small model size, it follows that the parameter space will also

be small. Thus, our aim is to use a quantum optimisation equivalent of this method

that we can use on variational circuits.

The parameter space of quantum states has a geometry that can be described by an
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invariant metric. Similar to how the Fisher Information Matrix is used to promote

the gradient descent method to the natural gradient descent method, the Fubini-

Study metric g (derived and elaborated on in Appendix A) exploits the geometric

structure of the variational quantum classifier’s parameter space to establish the

quantum gradient descent method. Here, the optimisation algorithm reads [103]

◊t+1 = ◊t ≠ ÷g+
OL(◊) , (3.3.5)

where g+ is the pseudo-inverse of the Fubini-Study metric. We implement this using

the Python package PennyLane [114]. This allows us to find the steepest descent in

the parameter space of the quantum states. The approach of Eq. (3.3.5) is designed

to optimise the parameters of the quantum variational circuit only, i.e. the quantum

gates with trainable parameters w = (–, —, “). To perform a full optimisation of

our hybrid model, we need to consider the classical components of our model -

the bias term. Thus, we propose to optimise our weights using quantum gradient

descent (3.3.6) while using vanilla gradient descent for the classical bias term b. By

calculating both gradients at each optimisation step,

◊w

t+1 = ◊w

t ≠ ÷g+
O

wL(◊) ,

◊b

t+1 = ◊b

t ≠ ÷ObL(◊) , (3.3.6)

we can be sure that our entire range of parameters is optimised simultaneously.

3.4 Analysis Setup

Our analysis will be performed using background and signal samples consisting of

pp æ tt̄ events and pp æ Z Õ
æ tt̄ events, respectively. These events are generated

using the same method as found in Chapter 2.2.

The analysis is based exclusively on the transverse momentum of one b-jet, pT,b1 ,

and the event’s missing energy, /ET . We show the distributions of these observables
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Figure 3.5: Comparison of the averaged training history for 15 runs
of the QVC models trained with quantum gradient des-
cent, QVC models trained using vanilla gradient descent
and the classical NN models. Figure (a) show models
trained with 1500 samples and Figure (b) shows models
trained with 500 samples.
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Figure 3.6: (a) Output of a QVC model trained with quantum gradi-
ent descent and (b) ROC curve for a QVC model trained
with quantum gradient descent, a QVC model trained
with vanilla gradient descent and the classical NN.

3.6 Conclusions

Classification of rare signal events from standard model background is an important

part of machine learning algorithms in collider phenomenology. Recently, more e�ort

has been dedicated to the development of novel techniques to find correlations in
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3.6 Conclusions
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Device Accuracy (%)
PennyLane default.qubit 72.6
ibmq_qasm_simulator 72.6
ibmqx2 71.4

Table 3.1: Test set results from model trained with quantum gradi-
ent descent sent to PennyLanes in-built simulator, IBM
Q simulator and IBM Q Yorktown (ibmqx2).

high-dimensional parameter spaces. In this chapter, we present a novel quantum-

classical hybrid neural network. Models such as the one developed make up part

of what is known as quantum machine learning (QML). This is the emerging field

aimed at applying quantum computing benefits to machine learning. By applying

the power of quantum computing to machine learning, it is hoped that one can create

classification techniques which will increase sensitivity in new physics searches.

The model proposed here is based on a variational quantum classifier. Variational

quantum classifiers are in many ways analogous to classical neural networks. An
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model size. The model shown here uses a quantum algorithm equivalent to natural

gradient descent. Typically, due to the need to invert large matrices, natural gradient

descent is computationally prohibitive when training neural networks. However,
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gradient descent to optimise our network.

We combine the use of quantum gradient descent to optimise the quantum gate

parameters in the model with classical gradient descent to optimise the classical
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optimised with standard gradient descent. The hybrid approach proved successful

in maximising the learning outcome. The hybrid approach learns faster than an

equivalent classical neural network or the classically trained VQC. Even on small

data samples the hybrid VQC still retains a high classification ability. While we

applied this methodology to generated data, we believe this approach can prove
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Figure 3.5: Comparison of the averaged training history for 15 runs
of the QVC models trained with quantum gradient des-
cent, QVC models trained using vanilla gradient descent
and the classical NN models. Figure (a) show models
trained with 1500 samples and Figure (b) shows models
trained with 500 samples.
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Anomaly detection

Classical autoencoder Quantum autoencoder

Figure 6: ROC curve between signal acceptance vs background rejection for Quantum Autoen-
coder(QAE) and Classical Autoencoder(CAE) for various values of mH and di↵erent latent dimen-
sions for a training datasize of 10k samples. The trend across latent dimensions is same for both
QAE and CAE with QAEs performing better in all cases.

5.3 Anomaly detection

We now explore the performance of the autoencoders for a search scenario of for di↵erent

signal strengths.

– 12 –

Much faster training and better performance for Quantum autoencoder

[Ngairangbam, 
MS, Takeuchi ’21]

better
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As we stated in the introduction, the purpose if this
study is not to recover these classical instanton solutions
for the tunnelling per se, as they are well-known, but
rather to demonstrate that the corresponding field-theory
configuration can be suitably encoded into a quantum
annealer. Once we have established this as a working
principle, one could even envisage testing for the above
behaviour directly. Therefore we will in what follows fo-
cus on using a quantum annealer to recover the simple
c = 0 solution required for the thin-wall regime, as a
proof of principle. We will therefore set ourselves the
task of minimising the corresponding action integral,

S1 =

Z 1

0
d⇢

1

2
�̇
2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how
to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adia-
batic theorem of quantum mechanics, which implies that
a physical system will remain in the ground state if a
given perturbation acts slowly enough, and if there is a
gap between the ground state and the rest of the system’s
energy spectrum [24]. For the annealer to provide a so-
lution to a mathematical problem, e.g. the calculation
of �(⇢) for Eq. 7, we have to find a mapping such that
the expectation value of its Hamiltonian can be identi-
fied with its solution, i.e. that it allows in this example
to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum
annealer is that of a general Ising model, in addition to
a time-dependent transverse field:

HQA(t) =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i +�(t)

X

i

�
X
i ,

(9)

where �
Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is

the Pauli Z operator, with the subscript indicating which
spin it acts upon, and �

X is its friend pointing in the X-
direction. The gradual decrease of �(t) ! 0 from a large
value should drive the system into the ground state of
the time-independent part of the Hamiltonian, and this
is where we will put the field theory:

H =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i . (10)

It is worth noting that the couplings Jij and hi could
also be adiabatically adjusted in the annealing process,
and this could ultimately be used to adjust the potential

U(�) of a system in the quantum annealer so as to observe
tunnelling, assuming it can be encoded. We will further
split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC)
. (11)

Here, H(QFT) is the Hamiltonian corresponding to the
minimisation of the action in Eq. 7 and H(BC) is a Hamil-
tonian that we add to enforce the boundary conditions2.

However our first task is to encode continuous field
values over a continuous domain, with only the discrete
Ising model to hand: this is what H(chain) is for. We begin
by splitting the radius variable ⇢ into M � 1 discrete
values and the field value at the `’th position into N � 1
discrete values:

⇢` = `⌫ = ⌫ . . .M⌫

�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

where in the present context one might for example take
a fiducial value �0 ⇡ �a and ⇠ = 2a/N , with M⌫ =
�⇢. Thus our Ising interaction Jij is an (MN)⇥ (MN)
matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that
correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this
we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to
the Hamiltonian

H(chain)
` = �⇤

0

@
N�1X

j=1

�
Z
`N+j�

Z
`N+j+1 � �

Z
`N+1 + �

Z
`N+N

1

A .

(12)
As shown in [47], taking ⇤ to be much larger than ev-
ery other energy scale in the overall Hamiltonian, these
terms will constrain the system to remain in the ground
subspace of the Hamiltonian, where exactly one spin po-
sition, ↵` say, is frustrated for each `. These states are
of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is repre-
sented by the position ↵` of the frustrated domain wall.
Conversely the field value at the `’th position can be
found by making the measurement

�(⇢`) =
1

2

N�1X

j=1

(�0 + j⇠) h�Z
`N+j+1 � �

Z
`N+ji , (14)

which only receives a contribution from frustrated spin
position with j = ↵`. For later, it is useful to note that
this is equivalent to

�(⇢`) = �0 +
N⇠

2
� ⇠

2

NX

j=1

h�Z
`N+ji . (15)

2 For a classical neural network-based approach to solving Eq. 2
by treating it as an optimisation problem see [46].

3

• Specific Hamiltonian. What does the “anneal” mean?
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induces bit-hopping in the Hamming/Hilbert space

• The idea is to dial this parameter to land in the global 
minimum (i.e. the solution) of some “problem space” 
described by J, h:

initial Hamiltonian

(ground state = superposition of qubits with 0 and 1)

final Hamiltonian

(encodes actual problem)

• Anneal idea: transition from ground state of initial 
Hamiltonian into ground state of problem Hamiltonian

Quantum annealing:  
Non-universal but universally powerful?
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Thermal (classical) and Quantum Annealing are complementary:

• Thermal tunnelling is fast over broad shallow potentials  
(Quantum “tunnelling” is exponentially slow)

• Quantum tunnelling is fast through tall thin potentials  
(Thermal “tunnelling” is exponentially slow - Boltzmann suppression)

• Hybrid approach can be useful depending on solution landscape
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How to encode a problem on an Ising model

Example 1: how many vertices on a graph can we colour so that none touch?

Let non-coloured vertices have               and coloured ones have

Add a reward for every coloured vertex, and for each link between vertices 
i,j we add a penalty if there are two +1 eigenvalues:

NP problem

Krakow                 Kolloquium      Michael Spannowsky             19.10.2022                   42



Example 2: N^2 students are to sit an exam in a square room with NxN 
desks 1.5m apart. Half the students (A) have a virus while 
half of them (B) do not.  
How can they be arranged to minimise the number of 
infections due to <2m social distancing?

There are N^2 spins            arranged in rows and columns. We do not care 
if A>=<A or B>=<B, but if A>=<B then we put a penalty of 2+ on the 

Hamiltonian (ferromagnetic coupling)
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Finally we need to apply constraint that #A=#B:
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• Example 2 done with classical thermal annealing using the Metropolis 
algorithm. Note this represents a search over solution space of 2^100 
configurations

• Importantly the constraint hamiltonian cannot be too big otherwise the hills 
are too high and it freezes too early. This makes the process require a 
(polynomial sized) bit of “thermal tuning”.

• Could be done more easily on quantum annealers as constraints could be high 
and it would still work, e.g. D-Wave quantum annealer. However, architecture 
(connectivity of J, h) is limited.
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As we stated in the introduction, the purpose if this
study is not to recover these classical instanton solutions
for the tunnelling per se, as they are well-known, but
rather to demonstrate that the corresponding field-theory
configuration can be suitably encoded into a quantum
annealer. Once we have established this as a working
principle, one could even envisage testing for the above
behaviour directly. Therefore we will in what follows fo-
cus on using a quantum annealer to recover the simple
c = 0 solution required for the thin-wall regime, as a
proof of principle. We will therefore set ourselves the
task of minimising the corresponding action integral,

S1 =

Z 1

0
d⇢

1

2
�̇
2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how
to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adia-
batic theorem of quantum mechanics, which implies that
a physical system will remain in the ground state if a
given perturbation acts slowly enough, and if there is a
gap between the ground state and the rest of the system’s
energy spectrum [24]. For the annealer to provide a so-
lution to a mathematical problem, e.g. the calculation
of �(⇢) for Eq. 7, we have to find a mapping such that
the expectation value of its Hamiltonian can be identi-
fied with its solution, i.e. that it allows in this example
to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum
annealer is that of a general Ising model, in addition to
a time-dependent transverse field:

HQA(t) =
X
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where �
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i =
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1 0
0 �1
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(�Z |0i = |0i, �Z |1i = �|1i) is

the Pauli Z operator, with the subscript indicating which
spin it acts upon, and �

X is its friend pointing in the X-
direction. The gradual decrease of �(t) ! 0 from a large
value should drive the system into the ground state of
the time-independent part of the Hamiltonian, and this
is where we will put the field theory:

H =
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It is worth noting that the couplings Jij and hi could
also be adiabatically adjusted in the annealing process,
and this could ultimately be used to adjust the potential

U(�) of a system in the quantum annealer so as to observe
tunnelling, assuming it can be encoded. We will further
split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC)
. (11)

Here, H(QFT) is the Hamiltonian corresponding to the
minimisation of the action in Eq. 7 and H(BC) is a Hamil-
tonian that we add to enforce the boundary conditions2.

However our first task is to encode continuous field
values over a continuous domain, with only the discrete
Ising model to hand: this is what H(chain) is for. We begin
by splitting the radius variable ⇢ into M � 1 discrete
values and the field value at the `’th position into N � 1
discrete values:

⇢` = `⌫ = ⌫ . . .M⌫

�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

where in the present context one might for example take
a fiducial value �0 ⇡ �a and ⇠ = 2a/N , with M⌫ =
�⇢. Thus our Ising interaction Jij is an (MN)⇥ (MN)
matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that
correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this
we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to
the Hamiltonian
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As shown in [47], taking ⇤ to be much larger than ev-
ery other energy scale in the overall Hamiltonian, these
terms will constrain the system to remain in the ground
subspace of the Hamiltonian, where exactly one spin po-
sition, ↵` say, is frustrated for each `. These states are
of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is repre-
sented by the position ↵` of the frustrated domain wall.
Conversely the field value at the `’th position can be
found by making the measurement

�(⇢`) =
1

2
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(�0 + j⇠) h�Z
`N+j+1 � �

Z
`N+ji , (14)

which only receives a contribution from frustrated spin
position with j = ↵`. For later, it is useful to note that
this is equivalent to

�(⇢`) = �0 +
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2
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h�Z
`N+ji . (15)

2 For a classical neural network-based approach to solving Eq. 2
by treating it as an optimisation problem see [46].

3

As we stated in the introduction, the purpose if this
study is not to recover these classical instanton solutions
for the tunnelling per se, as they are well-known, but
rather to demonstrate that the corresponding field-theory
configuration can be suitably encoded into a quantum
annealer. Once we have established this as a working
principle, one could even envisage testing for the above
behaviour directly. Therefore we will in what follows fo-
cus on using a quantum annealer to recover the simple
c = 0 solution required for the thin-wall regime, as a
proof of principle. We will therefore set ourselves the
task of minimising the corresponding action integral,

S1 =
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which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how
to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adia-
batic theorem of quantum mechanics, which implies that
a physical system will remain in the ground state if a
given perturbation acts slowly enough, and if there is a
gap between the ground state and the rest of the system’s
energy spectrum [24]. For the annealer to provide a so-
lution to a mathematical problem, e.g. the calculation
of �(⇢) for Eq. 7, we have to find a mapping such that
the expectation value of its Hamiltonian can be identi-
fied with its solution, i.e. that it allows in this example
to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum
annealer is that of a general Ising model, in addition to
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and this could ultimately be used to adjust the potential

U(�) of a system in the quantum annealer so as to observe
tunnelling, assuming it can be encoded. We will further
split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC)
. (11)

Here, H(QFT) is the Hamiltonian corresponding to the
minimisation of the action in Eq. 7 and H(BC) is a Hamil-
tonian that we add to enforce the boundary conditions2.

However our first task is to encode continuous field
values over a continuous domain, with only the discrete
Ising model to hand: this is what H(chain) is for. We begin
by splitting the radius variable ⇢ into M � 1 discrete
values and the field value at the `’th position into N � 1
discrete values:

⇢` = `⌫ = ⌫ . . .M⌫

�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

where in the present context one might for example take
a fiducial value �0 ⇡ �a and ⇠ = 2a/N , with M⌫ =
�⇢. Thus our Ising interaction Jij is an (MN)⇥ (MN)
matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that
correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this
we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to
the Hamiltonian
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As shown in [47], taking ⇤ to be much larger than ev-
ery other energy scale in the overall Hamiltonian, these
terms will constrain the system to remain in the ground
subspace of the Hamiltonian, where exactly one spin po-
sition, ↵` say, is frustrated for each `. These states are
of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is repre-
sented by the position ↵` of the frustrated domain wall.
Conversely the field value at the `’th position can be
found by making the measurement
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position with j = ↵`. For later, it is useful to note that
this is equivalent to
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Consider encoding a continuous filed value          at some point, and discretise into N
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Wish to represent it as a point on a spin chain == domain wall encoding: 

We translate this to a field value using

For this domain wall encoding to work we have to avoid mult. frustrations e.g. 

As we stated in the introduction, the purpose if this
study is not to recover these classical instanton solutions
for the tunnelling per se, as they are well-known, but
rather to demonstrate that the corresponding field-theory
configuration can be suitably encoded into a quantum
annealer. Once we have established this as a working
principle, one could even envisage testing for the above
behaviour directly. Therefore we will in what follows fo-
cus on using a quantum annealer to recover the simple
c = 0 solution required for the thin-wall regime, as a
proof of principle. We will therefore set ourselves the
task of minimising the corresponding action integral,
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which should yield a solution of the form shown in Fig.2b.
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annealers. A quantum annealer is based on the adia-
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a physical system will remain in the ground state if a
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fied with its solution, i.e. that it allows in this example
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It is worth noting that the couplings Jij and hi could
also be adiabatically adjusted in the annealing process,
and this could ultimately be used to adjust the potential

U(�) of a system in the quantum annealer so as to observe
tunnelling, assuming it can be encoded. We will further
split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC)
. (11)

Here, H(QFT) is the Hamiltonian corresponding to the
minimisation of the action in Eq. 7 and H(BC) is a Hamil-
tonian that we add to enforce the boundary conditions2.

However our first task is to encode continuous field
values over a continuous domain, with only the discrete
Ising model to hand: this is what H(chain) is for. We begin
by splitting the radius variable ⇢ into M � 1 discrete
values and the field value at the `’th position into N � 1
discrete values:

⇢` = `⌫ = ⌫ . . .M⌫

�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

where in the present context one might for example take
a fiducial value �0 ⇡ �a and ⇠ = 2a/N , with M⌫ =
�⇢. Thus our Ising interaction Jij is an (MN)⇥ (MN)
matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that
correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this
we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to
the Hamiltonian

H(chain)
` = �⇤
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As shown in [47], taking ⇤ to be much larger than ev-
ery other energy scale in the overall Hamiltonian, these
terms will constrain the system to remain in the ground
subspace of the Hamiltonian, where exactly one spin po-
sition, ↵` say, is frustrated for each `. These states are
of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is repre-
sented by the position ↵` of the frustrated domain wall.
Conversely the field value at the `’th position can be
found by making the measurement

�(⇢`) =
1

2

N�1X

j=1

(�0 + j⇠) h�Z
`N+j+1 � �

Z
`N+ji , (14)

which only receives a contribution from frustrated spin
position with j = ↵`. For later, it is useful to note that
this is equivalent to

�(⇢`) = �0 +
N⇠
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j=1

h�Z
`N+ji . (15)

2 For a classical neural network-based approach to solving Eq. 2
by treating it as an optimisation problem see [46].
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As we stated in the introduction, the purpose if this
study is not to recover these classical instanton solutions
for the tunnelling per se, as they are well-known, but
rather to demonstrate that the corresponding field-theory
configuration can be suitably encoded into a quantum
annealer. Once we have established this as a working
principle, one could even envisage testing for the above
behaviour directly. Therefore we will in what follows fo-
cus on using a quantum annealer to recover the simple
c = 0 solution required for the thin-wall regime, as a
proof of principle. We will therefore set ourselves the
task of minimising the corresponding action integral,

S1 =

Z 1

0
d⇢

1

2
�̇
2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how
to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adia-
batic theorem of quantum mechanics, which implies that
a physical system will remain in the ground state if a
given perturbation acts slowly enough, and if there is a
gap between the ground state and the rest of the system’s
energy spectrum [24]. For the annealer to provide a so-
lution to a mathematical problem, e.g. the calculation
of �(⇢) for Eq. 7, we have to find a mapping such that
the expectation value of its Hamiltonian can be identi-
fied with its solution, i.e. that it allows in this example
to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum
annealer is that of a general Ising model, in addition to
a time-dependent transverse field:

HQA(t) =
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where �
Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is

the Pauli Z operator, with the subscript indicating which
spin it acts upon, and �

X is its friend pointing in the X-
direction. The gradual decrease of �(t) ! 0 from a large
value should drive the system into the ground state of
the time-independent part of the Hamiltonian, and this
is where we will put the field theory:

H =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i . (10)

It is worth noting that the couplings Jij and hi could
also be adiabatically adjusted in the annealing process,
and this could ultimately be used to adjust the potential

U(�) of a system in the quantum annealer so as to observe
tunnelling, assuming it can be encoded. We will further
split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC)
. (11)

Here, H(QFT) is the Hamiltonian corresponding to the
minimisation of the action in Eq. 7 and H(BC) is a Hamil-
tonian that we add to enforce the boundary conditions2.

However our first task is to encode continuous field
values over a continuous domain, with only the discrete
Ising model to hand: this is what H(chain) is for. We begin
by splitting the radius variable ⇢ into M � 1 discrete
values and the field value at the `’th position into N � 1
discrete values:

⇢` = `⌫ = ⌫ . . .M⌫

�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

where in the present context one might for example take
a fiducial value �0 ⇡ �a and ⇠ = 2a/N , with M⌫ =
�⇢. Thus our Ising interaction Jij is an (MN)⇥ (MN)
matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that
correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this
we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to
the Hamiltonian
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As shown in [47], taking ⇤ to be much larger than ev-
ery other energy scale in the overall Hamiltonian, these
terms will constrain the system to remain in the ground
subspace of the Hamiltonian, where exactly one spin po-
sition, ↵` say, is frustrated for each `. These states are
of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is repre-
sented by the position ↵` of the frustrated domain wall.
Conversely the field value at the `’th position can be
found by making the measurement

�(⇢`) =
1

2

N�1X

j=1

(�0 + j⇠) h�Z
`N+j+1 � �

Z
`N+ji , (14)

which only receives a contribution from frustrated spin
position with j = ↵`. For later, it is useful to note that
this is equivalent to

�(⇢`) = �0 +
N⇠

2
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NX
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h�Z
`N+ji . (15)

2 For a classical neural network-based approach to solving Eq. 2
by treating it as an optimisation problem see [46].
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As we stated in the introduction, the purpose if this
study is not to recover these classical instanton solutions
for the tunnelling per se, as they are well-known, but
rather to demonstrate that the corresponding field-theory
configuration can be suitably encoded into a quantum
annealer. Once we have established this as a working
principle, one could even envisage testing for the above
behaviour directly. Therefore we will in what follows fo-
cus on using a quantum annealer to recover the simple
c = 0 solution required for the thin-wall regime, as a
proof of principle. We will therefore set ourselves the
task of minimising the corresponding action integral,
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0
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which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how
to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adia-
batic theorem of quantum mechanics, which implies that
a physical system will remain in the ground state if a
given perturbation acts slowly enough, and if there is a
gap between the ground state and the rest of the system’s
energy spectrum [24]. For the annealer to provide a so-
lution to a mathematical problem, e.g. the calculation
of �(⇢) for Eq. 7, we have to find a mapping such that
the expectation value of its Hamiltonian can be identi-
fied with its solution, i.e. that it allows in this example
to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum
annealer is that of a general Ising model, in addition to
a time-dependent transverse field:
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where �
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(�Z |0i = |0i, �Z |1i = �|1i) is

the Pauli Z operator, with the subscript indicating which
spin it acts upon, and �

X is its friend pointing in the X-
direction. The gradual decrease of �(t) ! 0 from a large
value should drive the system into the ground state of
the time-independent part of the Hamiltonian, and this
is where we will put the field theory:

H =
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It is worth noting that the couplings Jij and hi could
also be adiabatically adjusted in the annealing process,
and this could ultimately be used to adjust the potential

U(�) of a system in the quantum annealer so as to observe
tunnelling, assuming it can be encoded. We will further
split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC)
. (11)

Here, H(QFT) is the Hamiltonian corresponding to the
minimisation of the action in Eq. 7 and H(BC) is a Hamil-
tonian that we add to enforce the boundary conditions2.

However our first task is to encode continuous field
values over a continuous domain, with only the discrete
Ising model to hand: this is what H(chain) is for. We begin
by splitting the radius variable ⇢ into M � 1 discrete
values and the field value at the `’th position into N � 1
discrete values:

⇢` = `⌫ = ⌫ . . .M⌫

�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

where in the present context one might for example take
a fiducial value �0 ⇡ �a and ⇠ = 2a/N , with M⌫ =
�⇢. Thus our Ising interaction Jij is an (MN)⇥ (MN)
matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that
correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this
we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to
the Hamiltonian

H(chain)
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As shown in [47], taking ⇤ to be much larger than ev-
ery other energy scale in the overall Hamiltonian, these
terms will constrain the system to remain in the ground
subspace of the Hamiltonian, where exactly one spin po-
sition, ↵` say, is frustrated for each `. These states are
of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is repre-
sented by the position ↵` of the frustrated domain wall.
Conversely the field value at the `’th position can be
found by making the measurement

�(⇢`) =
1

2

N�1X

j=1

(�0 + j⇠) h�Z
`N+j+1 � �

Z
`N+ji , (14)

which only receives a contribution from frustrated spin
position with j = ↵`. For later, it is useful to note that
this is equivalent to

�(⇢`) = �0 +
N⇠
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NX

j=1

h�Z
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2 For a classical neural network-based approach to solving Eq. 2
by treating it as an optimisation problem see [46].

3

receiving only contribution from frustration at 

[Chancellor ’19]Encoding a field theory

Krakow                 Kolloquium      Michael Spannowsky             19.10.2022                   45



As we stated in the introduction, the purpose if this
study is not to recover these classical instanton solutions
for the tunnelling per se, as they are well-known, but
rather to demonstrate that the corresponding field-theory
configuration can be suitably encoded into a quantum
annealer. Once we have established this as a working
principle, one could even envisage testing for the above
behaviour directly. Therefore we will in what follows fo-
cus on using a quantum annealer to recover the simple
c = 0 solution required for the thin-wall regime, as a
proof of principle. We will therefore set ourselves the
task of minimising the corresponding action integral,

S1 =

Z 1

0
d⇢

1

2
�̇
2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how
to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adia-
batic theorem of quantum mechanics, which implies that
a physical system will remain in the ground state if a
given perturbation acts slowly enough, and if there is a
gap between the ground state and the rest of the system’s
energy spectrum [24]. For the annealer to provide a so-
lution to a mathematical problem, e.g. the calculation
of �(⇢) for Eq. 7, we have to find a mapping such that
the expectation value of its Hamiltonian can be identi-
fied with its solution, i.e. that it allows in this example
to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum
annealer is that of a general Ising model, in addition to
a time-dependent transverse field:

HQA(t) =
X
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where �
Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is

the Pauli Z operator, with the subscript indicating which
spin it acts upon, and �

X is its friend pointing in the X-
direction. The gradual decrease of �(t) ! 0 from a large
value should drive the system into the ground state of
the time-independent part of the Hamiltonian, and this
is where we will put the field theory:

H =
X
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Jij�
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j +

X

i

hi�
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i . (10)

It is worth noting that the couplings Jij and hi could
also be adiabatically adjusted in the annealing process,
and this could ultimately be used to adjust the potential

U(�) of a system in the quantum annealer so as to observe
tunnelling, assuming it can be encoded. We will further
split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC)
. (11)

Here, H(QFT) is the Hamiltonian corresponding to the
minimisation of the action in Eq. 7 and H(BC) is a Hamil-
tonian that we add to enforce the boundary conditions2.

However our first task is to encode continuous field
values over a continuous domain, with only the discrete
Ising model to hand: this is what H(chain) is for. We begin
by splitting the radius variable ⇢ into M � 1 discrete
values and the field value at the `’th position into N � 1
discrete values:

⇢` = `⌫ = ⌫ . . .M⌫

�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

where in the present context one might for example take
a fiducial value �0 ⇡ �a and ⇠ = 2a/N , with M⌫ =
�⇢. Thus our Ising interaction Jij is an (MN)⇥ (MN)
matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that
correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this
we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to
the Hamiltonian
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As shown in [47], taking ⇤ to be much larger than ev-
ery other energy scale in the overall Hamiltonian, these
terms will constrain the system to remain in the ground
subspace of the Hamiltonian, where exactly one spin po-
sition, ↵` say, is frustrated for each `. These states are
of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is repre-
sented by the position ↵` of the frustrated domain wall.
Conversely the field value at the `’th position can be
found by making the measurement

�(⇢`) =
1

2
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(�0 + j⇠) h�Z
`N+j+1 � �

Z
`N+ji , (14)

which only receives a contribution from frustrated spin
position with j = ↵`. For later, it is useful to note that
this is equivalent to
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2 For a classical neural network-based approach to solving Eq. 2
by treating it as an optimisation problem see [46].
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As we stated in the introduction, the purpose if this
study is not to recover these classical instanton solutions
for the tunnelling per se, as they are well-known, but
rather to demonstrate that the corresponding field-theory
configuration can be suitably encoded into a quantum
annealer. Once we have established this as a working
principle, one could even envisage testing for the above
behaviour directly. Therefore we will in what follows fo-
cus on using a quantum annealer to recover the simple
c = 0 solution required for the thin-wall regime, as a
proof of principle. We will therefore set ourselves the
task of minimising the corresponding action integral,

S1 =
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which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how
to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adia-
batic theorem of quantum mechanics, which implies that
a physical system will remain in the ground state if a
given perturbation acts slowly enough, and if there is a
gap between the ground state and the rest of the system’s
energy spectrum [24]. For the annealer to provide a so-
lution to a mathematical problem, e.g. the calculation
of �(⇢) for Eq. 7, we have to find a mapping such that
the expectation value of its Hamiltonian can be identi-
fied with its solution, i.e. that it allows in this example
to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum
annealer is that of a general Ising model, in addition to
a time-dependent transverse field:
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the Pauli Z operator, with the subscript indicating which
spin it acts upon, and �

X is its friend pointing in the X-
direction. The gradual decrease of �(t) ! 0 from a large
value should drive the system into the ground state of
the time-independent part of the Hamiltonian, and this
is where we will put the field theory:

H =
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It is worth noting that the couplings Jij and hi could
also be adiabatically adjusted in the annealing process,
and this could ultimately be used to adjust the potential

U(�) of a system in the quantum annealer so as to observe
tunnelling, assuming it can be encoded. We will further
split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC)
. (11)

Here, H(QFT) is the Hamiltonian corresponding to the
minimisation of the action in Eq. 7 and H(BC) is a Hamil-
tonian that we add to enforce the boundary conditions2.

However our first task is to encode continuous field
values over a continuous domain, with only the discrete
Ising model to hand: this is what H(chain) is for. We begin
by splitting the radius variable ⇢ into M � 1 discrete
values and the field value at the `’th position into N � 1
discrete values:

⇢` = `⌫ = ⌫ . . .M⌫

�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

where in the present context one might for example take
a fiducial value �0 ⇡ �a and ⇠ = 2a/N , with M⌫ =
�⇢. Thus our Ising interaction Jij is an (MN)⇥ (MN)
matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that
correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this
we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to
the Hamiltonian
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As shown in [47], taking ⇤ to be much larger than ev-
ery other energy scale in the overall Hamiltonian, these
terms will constrain the system to remain in the ground
subspace of the Hamiltonian, where exactly one spin po-
sition, ↵` say, is frustrated for each `. These states are
of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is repre-
sented by the position ↵` of the frustrated domain wall.
Conversely the field value at the `’th position can be
found by making the measurement

�(⇢`) =
1

2
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j=1

(�0 + j⇠) h�Z
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which only receives a contribution from frustrated spin
position with j = ↵`. For later, it is useful to note that
this is equivalent to
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2 For a classical neural network-based approach to solving Eq. 2
by treating it as an optimisation problem see [46].

3

As we stated in the introduction, the purpose if this
study is not to recover these classical instanton solutions
for the tunnelling per se, as they are well-known, but
rather to demonstrate that the corresponding field-theory
configuration can be suitably encoded into a quantum
annealer. Once we have established this as a working
principle, one could even envisage testing for the above
behaviour directly. Therefore we will in what follows fo-
cus on using a quantum annealer to recover the simple
c = 0 solution required for the thin-wall regime, as a
proof of principle. We will therefore set ourselves the
task of minimising the corresponding action integral,

S1 =
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which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how
to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adia-
batic theorem of quantum mechanics, which implies that
a physical system will remain in the ground state if a
given perturbation acts slowly enough, and if there is a
gap between the ground state and the rest of the system’s
energy spectrum [24]. For the annealer to provide a so-
lution to a mathematical problem, e.g. the calculation
of �(⇢) for Eq. 7, we have to find a mapping such that
the expectation value of its Hamiltonian can be identi-
fied with its solution, i.e. that it allows in this example
to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum
annealer is that of a general Ising model, in addition to
a time-dependent transverse field:
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where �
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the Pauli Z operator, with the subscript indicating which
spin it acts upon, and �

X is its friend pointing in the X-
direction. The gradual decrease of �(t) ! 0 from a large
value should drive the system into the ground state of
the time-independent part of the Hamiltonian, and this
is where we will put the field theory:

H =
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It is worth noting that the couplings Jij and hi could
also be adiabatically adjusted in the annealing process,
and this could ultimately be used to adjust the potential

U(�) of a system in the quantum annealer so as to observe
tunnelling, assuming it can be encoded. We will further
split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC)
. (11)

Here, H(QFT) is the Hamiltonian corresponding to the
minimisation of the action in Eq. 7 and H(BC) is a Hamil-
tonian that we add to enforce the boundary conditions2.

However our first task is to encode continuous field
values over a continuous domain, with only the discrete
Ising model to hand: this is what H(chain) is for. We begin
by splitting the radius variable ⇢ into M � 1 discrete
values and the field value at the `’th position into N � 1
discrete values:

⇢` = `⌫ = ⌫ . . .M⌫

�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

where in the present context one might for example take
a fiducial value �0 ⇡ �a and ⇠ = 2a/N , with M⌫ =
�⇢. Thus our Ising interaction Jij is an (MN)⇥ (MN)
matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that
correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this
we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to
the Hamiltonian

H(chain)
` = �⇤

0

@
N�1X

j=1

�
Z
`N+j�

Z
`N+j+1 � �

Z
`N+1 + �

Z
`N+N

1

A .

(12)
As shown in [47], taking ⇤ to be much larger than ev-
ery other energy scale in the overall Hamiltonian, these
terms will constrain the system to remain in the ground
subspace of the Hamiltonian, where exactly one spin po-
sition, ↵` say, is frustrated for each `. These states are
of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is repre-
sented by the position ↵` of the frustrated domain wall.
Conversely the field value at the `’th position can be
found by making the measurement

�(⇢`) =
1

2

N�1X

j=1

(�0 + j⇠) h�Z
`N+j+1 � �

Z
`N+ji , (14)

which only receives a contribution from frustrated spin
position with j = ↵`. For later, it is useful to note that
this is equivalent to

�(⇢`) = �0 +
N⇠

2
� ⇠

2

NX

j=1

h�Z
`N+ji . (15)

2 For a classical neural network-based approach to solving Eq. 2
by treating it as an optimisation problem see [46].

3

Pictorial representation of a solution spacetime discretised

Can be extended to multi-dim (2D) examples/functions/field theories

[Abel, Blance, MS ’21]
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Example 1: Matter-Antimatter asymmetry

Sakharov conditions:

• B violation

• CP violation

• Departure from thermal equilibrium

(for dynamical generation of Baryon asymmetry)

Sphaleron

enough? -> flavour physics

not enough
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Semiclassical calculations for bubbles and phase transitions
12.1 Bounces in a scalar field theory 255
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Fig. 12.1. A typical potential with a false vacuum.

To go from the false vacuum through a series of spatially homogeneous configura-
tions would require traversing an infinite potential energy barrier. The tunneling
amplitude for this vanishes. Instead, the false vacuum decays by a tunneling pro-
cess that takes a spatially homogeneous state to one with a region of approximate
true vacuum—a bubble—embedded in a false vacuum background. Because the
bubble can be nucleated anywhere, the decay rate is proportional to the volume
of space, and thus formally infinite. The finite physically measurable quantity
that we need is the bubble nucleation rate per unit volume, Γ/V.

One can envision many paths through the space of field configurations that
connect the pure false vacuum to a configuration with a bubble. Two of these are
illustrated in Fig. 12.2. Each path specifies a series of field configurations that
define a slice through the potential energy barrier. A plot of U [φ(x)] along the
path would be similar to the one-dimensional potential energy barrier shown in
Fig. 9.3. The end point of the path, corresponding to the field configuration at
the time that the bubble nucleates, has the same potential energy as the initial,
pure false vacuum, configuration; quantum tunneling conserves energy.

As described in Chap. 9, the tunneling amplitude is dominated by the path
that minimizes the barrier penetration integral B. This path can be found by
finding the bounce solution to the Euclidean equation of motion [226], which in
the present case is the field equation

0 =
d2φ

dτ2
+ ∇2φ− dV

dφ
(12.3)

that follows from the Euclidean action1

1 Because almost all actions in this chapter will be Euclidean, I will generally omit an explicit
subscript E on the action.

256 Vacuum decay

Fig. 12.2. Two of the infinite number of paths through the potential energy
barrier that connect the pure false vacuum, on the left, with a configuration
of the same energy, on the right, that contains a true vacuum bubble in a false
vacuum background. In the upper path the bubbles are all of the same size,
with the field in the interior progressing through the barrier in V (φ). In the
lower path the bubble interior is always in the true vacuum, while the bubble
radius increases from zero to that of the nucleated bubble.
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dτ d3x
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(∇φ)2 + V (φ)

]
. (12.4)

I will denote the bounce solution by φb(x, t). The nucleation rate is then of the
form

Γ
V = Ae−B (12.5)

where
B = S(φb)− S(φfv) . (12.6)

Here S(φb) is the Euclidean action of the bounce solution and

S(φfv) =
∫

dτ d3xVfv (12.7)

that of the homogeneous false vacuum. Although both are infinite, their difference
is finite.

Solving Eq. (12.3) is equivalent to finding a static solution in four spatial
dimensions. It might appear that this is forbidden by Derrick’s theorem. However,
the proof of Derrick’s theorem assumes that φ approaches the absolute minimum
of V at spatial infinity, which is not the case for the bounce. For a theory in D
spatial dimensions we can define
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Potential energy

Transition from false to true via tunnelling. Bubble 
can nucleate anywhere, with nucleation rate per unit 
volume:
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Methods to calculate bubble nucleation:

• Thin-wall approximation

• over/undershoot method
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Need to find stationary points of Euclidean action:

Growth of bubble via classical equation of motion 

CHAPTER 2. VACUUM DECAY, BACKGROUND 20

If we assume that the size of the bubble is not too small, we can describe the subsequent evolution

of the field by its classical (Lorentzian) equations of motion

✓
�

@2

@t2
+r

2

◆
� =

@

@�
V (�) . (2.29)

Comparison between Eq. (2.15) and Eq. (2.29) shows that the solutions of the Lorentzian

equations of motion are the analytic continuations of their Euclidean counterparts and can be

obtained by replacing ⌧ ! it in the Euclidean solutions. Therefore

�(~x, t) = �(~x, i⌧) = �(⇢) = �(|~x|2 � t2) . (2.30)

As seen from Eq. (2.30), the O(4) symmetry of the Euclidean solution translates into the

O(3, 1) symmetry for the consequent expansion of the bubble. Again we can get intuition about

the solution by going to the thin-wall limit. In this approximation, the location of the wall is at

|~x|2 � t2 = R2 . (2.31)

The bubble radius R is determined by the potential as described in the previous subsection. It

should be of the same order as the energy scales of the scalar field and therefore a relatively short

length compared to macroscopic lengths. This means that immediately after the nucleation of the

bubble, the wall moves almost at the speed of light and starts eating away more and more of the

false vacuum. The wall’s Lorentz factor � = (1� v2)�1/2 from Eq. (2.31) is

� =
x

R
. (2.32)

During the conversion of the false vacuum into the true vacuum, some energy is released. This

energy is spent on accelerating the wall. It is easy to show that in the thin-wall limit, all the energy

gained from the transition is exactly converted into the kinetic energy of the wall. This means that

when the bubble passes a point, there is no ripple or radiation left behind it and only the true

vacuum region at rest is created.

2.4.3 Path integral approach

Coleman and Callan [17] used a path integral approach in Euclidean spacetime to calculate the

tunneling exponent and prefactor for the decay of metastable vacua. In this section we follow

• Polygon approximation

• Neural-Net approach [Piscopo, MS, Waite ’19]

[Guada, Maiezza, 
Nemevsek ’18]
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A quantum laboratory for QFT and QML

• Using the spin-chain approach for field theories discussed before, we can 
encode a QFT on a quantum annealer and study its dynamics directly.

• To show that the system is a true and genuine quantum system we 
investigate if the state can tunnel from a meta-stable vacuum into a the 
true vacuum.

of nonperturbative phenomena by studying them exper-
imentally. It may even be possible to observe new phe-
nomena that have not yet been anticipated. For this
study we will of course be limited by the hardware that is
available to us, so the discussion is necessarily restricted
to the simpler field theories that can exhibit instanton-
like behaviour, namely the aforementioned d = 1 scalar
field theory. Nevertheless, within this theory we will be
able to set-up a potential that we then manipulate by
hand so that it develops a non-trivial vacuum structure
that induces tunnelling. We believe this is the first time
that it has been possible to implement instanton pro-
cesses in a freely chosen quantum field theory and observe
such phenomena experimentally.

II. SET-UP FOR FALSE VACUUM DECAY

It will be convenient for several practical reasons to
set-up a physical system on the annealer that recreates
quantum decay in a potential of the form

U(�) =
3

4
tanh2 �� k(t) sech2 (c(�� v)) , (1)

where c, v are constants while k is time-dependent, and
�(t) is the field. Note that � is the dimensionless object
that we will define on the annealer. When required we
will convert it into a dimensionful field ⌘ by defining

� = ⌘/⌘0 , (2)

where ⌘0 is a constant. In the d = 1 field theory there
are of course no space dimensions, and at leading order
it is isomorphic to quantum mechanics (with � playing
the role of x). However the d = 1 field theory formalism
allows for particle creation and is the starting point for
generalisation to higher dimensions, as discussed in the
introduction.

The first term in U provides a potential-well around
� = 0 which in principle allows the system to begin as a
bound-state there. As mentioned this is one of the bene-
fits of annealers over discrete gate systems: in order first
to reach a ground state, a system has to dissipate. The
k-term will then be turned on adiabatically during the
anneal in order to allow tunnelling into the global mini-
mum that forms at � = v. For this study we shall mostly
take c = 1, so that the potential during the tunnelling
period will consist of equally sized potential wells. The
potential is plotted in Fig.1 for k = 1 and various values
of separation parameter v.

This function has several nice properties for our pur-
poses. One is that each individual well has the Pöschl-
Teller �sech2� form, which can be solved. Moreover
the potentials around each minimum decay exponentially.
This makes it possible to “turn on” the global true min-
imum by adjusting k without significantly altering the
profile of the potential around the false minimum (un-
like the more commonly considered case of quartic po-

Figure 1: The double-Pöschl-Teller potential well for different
k and v. The system is initialised around � = 0 and allowed
to decay to the true minimum at � ⇡ v.

tentials). Other useful features of this choice will be dis-
cussed below when they become relevant.

We will begin the system with k = 0, such that it
falls into a Pöschl-Teller ground state. Assuming that
the completion of the potential into a d = 1 field the-
ory ultimately corresponds to the Schrödinger equation,
the ground state (and its excited friends) in such a po-
tential can be determined using factorisation and ladder-
operator methods (see for example [30, 31]). In a theory
where

2m⌘20
~2 U = �(�+ 1) tanh2�, (3)

the bound states are given by Legendre polynomials of
the form Pµ
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is given by

 0(�) = N0 sech�� , (4)
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N
2
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E0 =
~2�
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. (5)

We will not know a priori the value of

�
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in the effective field theory induced on the annealer, and
estimating it will essentially constitute our calibration.
In order to do this we could for example multiply U by
a constant, ↵ say, and by trial-and-error find a value for
↵ that yielded a ground state wave function of the form
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This makes it possible to “turn on” the global true min-
imum by adjusting k without significantly altering the
profile of the potential around the false minimum (un-
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Figure 1: The double-Pöschl-Teller potential well for different
k and v. The system is initialised around � = 0 and allowed
to decay to the true minimum at � ⇡ v.

tentials). Other useful features of this choice will be dis-
cussed below when they become relevant.

We will begin the system with k = 0, such that it
falls into a Pöschl-Teller ground state. Assuming that
the completion of the potential into a d = 1 field the-
ory ultimately corresponds to the Schrödinger equation,
the ground state (and its excited friends) in such a po-
tential can be determined using factorisation and ladder-
operator methods (see for example [30, 31]). In a theory
where

2m⌘20
~2 U = �(�+ 1) tanh2�, (3)

the bound states are given by Legendre polynomials of
the form Pµ

� (tanh �), and the ground state, P�
� (tanh �),

is given by

 0(�) = N0 sech�� , (4)

where the normalisation constant is

N
2
0 = ⇡� 1

2�(�+ 1/2)/�(�) .

This state, which is our idealised starting state, has en-
ergy

E0 =
~2�
2m⌘20

. (5)

We will not know a priori the value of

�
def
= ~2/2m⌘20

in the effective field theory induced on the annealer, and
estimating it will essentially constitute our calibration.
In order to do this we could for example multiply U by
a constant, ↵ say, and by trial-and-error find a value for
↵ that yielded a ground state wave function of the form
 0 = sech(�)/

p
⇡ corresponding to � = 1/2. According

to (3) that value of ↵ would be equal to �. However this is

2

is the field and c, v are dimless constants

[Abel, MS ’20]
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Figure 8: The transition probabilities for different v with sq =
0.7 after ttunnel = 100µs.

Figure 9: Best fit values for the tunnelling fraction P (v) =
ae�bv for varying vacuum expectation values v, with tun-
nelling time ttunnel = 100µs are a = 50.5 and b = 2.29.

energy Ea) increasing with v.
In order to probe this particular question, we will now

examine a potential that provides a cleaner separation
between quantum and thermal behaviour, as shown in
Figure 10. The potential is divided up more precisely
than before, in the manner described earlier, so that it is
of the form in (24) where we take C0 = 0.2 as our initial
h-gain parameter. In other words the terms in our new
potential can be written

U0 =
3

4
tanh2 �� C0 U1 ,

U1 = k0 tanh2 �� k sech2c(�� v) , (27)

with the potential at t = 0 being the single Pöschl-Teller
well, shown as the solid blue line. When C(t) ! 1, the
first term in U1 then raises the sides of the well by (1 �
C0)k0, while the second term introduces a new well at
� = v of width ⇠ 1/c and depth (1�C0)k. We will take
c = 3 and k0 = 1/2. We then consider k = k0 or k = 2.
For this study we will also choose sq = 0.65 which gives

Figure 10: Minimally disturbing the initial state in order to
test if the tunnelling exhibits quantum or thermal behaviour.
The initial potential is a single well, and additional terms
raise a barrier between it and a new well that is introduced
with either a minimum at either exactly the same height as
the original potential, or deeper than the original one.

more rapid tunnelling, allowing us choose values of v that
are in the flat region of the potential.

There are several reasons that this constitutes a clean
separation of quantum and thermal behaviour. First it
is notable from the study above that the bound state in
which the system begins has a rather high energy. As
such if we simply introduce a new minimum as we did
earlier then it is likely that some components of the wave-
function will be able to tunnel rapidly. The initial dip at v
that was present in our previous configuration would also
be able to capture states during the dissipation phase.
Neither of these two types of state could be very easily
distinguished from ones that had thermally tunnelled.

What do we expect the tunnelling behaviour to be
in the potential above? In the situation where k = k0

no new minimum is introduced that would be quantum
mechanically accessible to any component of the initial
bound state. Therefore in principle we should not find
any states in this minimum at all if the system is purely
quantum, although in practice this will depend on there
being no remaining continuous component in the spec-
trum at all. This is in contrast to the case where k = 2
shown as the dashed red line in Fig. 10, where the stan-
dard quantum tunnelling should take place. Moreover
according to (14) the observed tunnelling rate into this
minimum should again drop-off with increasing v, even if
we consider values of v in the region where barrier height
is constant.

Let us contrast this behaviour with what one would
expect for a thermally activated system. In this case
there would be little distinction between the k = 1/2
and k = 2 cases. Once thermal effects are large enough
to excite states over the barrier, roughly similar propor-
tions would be captured by the new minimum at � = v.
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Figure 6: The probability density of the SHO with N = 200
and with sq = 0.7 after time t = 75µs and with  = 0.06.
The ground-states are measured with an interval �� = 13.
The probability density approximates the red line, which cor-
responds to � ⌘ ~2/2m⌘2

0 = 0.33.

so we can reasonably conclude that for this choice of pa-
rameters 75 µs is long enough for the required dissipation.
Note that the ⌘0 parameter cancels in the /� ratio. Sec-
ondly, this curve leads to an approximate estimation of
� = 0.33. Choosing different physical couplings appears
to yield similar values of �, so not only do the wave-
functions have the correct shape but they also have the
correct functional dependence on . By contrast the re-
sult for the inferred value of � does depend on the interval
we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.

It is also instructive to consider the fact that the an-
nealer returns a wave-function with different � depending
on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it approaches
a �-function, which in a reverse anneal is where it begins.
In other words the “classical” �-function position eigen-
state is simply the ground state wave function when there
is no transverse field component.

Figure 7: The probability distribution with v = 2.5, sq = 0.7
after ttunnel = 50, 100, 150mus, where N is the number of
events.

B. Tunnelling

We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence
in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Neverthe-
less the observed behaviour provides good support for the
presence of quantum tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that
the states are really tunnelling through the barrier rather
than being thermally excited over the top, noting for ex-
ample that an explanation for the drop-off with v ob-
served in the tunnelling rate above, could simply be due
to the height of the barrier (and hence the activation
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Also dynamics has characteris<c behaviour. For example it s<ll “tunnels” to the 
boAom of a poten<al even if there is no barrier: i.e. the wave func<on leaks 
across, rather than rolling as a lump — 

Mul<ple measurements on the quantum annealer:
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Example 2: Optimisation comparison quantum vs classical

gradient descent Nelder-Mead Thermal Annealing Quantum Annealing

Multi-well potential

Applied to several examples in [Abel, Blance, MS ’21], let’s show one here:
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Results for Multi-well potential

Quantum 
annealer almost 

never gets 
stuck in wrong 

minimum

QA is depth 
savvy, i.e. works 

qualitatively 
different 

• Quantum algorithms finds global 
minimum of potential reliably and 
fast!

[Abel, Blance, MS ’21]

Clear significant quantum advantage
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Completely Quantum Neural Networks

This	tunnelling	ability	can	be	used	to	opEmise	loss	funcEons	in	Neural	Nets	

The	problem	-	train	a	NN	to	find	the	weights	and	biases	on	quantum	annealer:		

NN	produces	outputs	Y	by	passing	inputs	x	through	layers	with	acRvaRon	funcRons	g	as	follows:

This	tunnelling	ability	can	be	used	to	opEmise	loss	funcEons	in	Neural	Nets	

The	problem	-	train	a	NN	to	find	the	weights	and	biases	on	quantum	annealer:		

NN	produces	outputs	Y	by	passing	inputs	x	through	layers	with	acRvaRon	funcRons	g	as	follows:

Structure of node i, in layer L

This	tunnelling	ability	can	be	used	to	opEmise	loss	funcEons	in	Neural	Nets	

The	problem	-	train	a	NN	to	find	the	weights	and	biases	on	quantum	annealer:		

NN	produces	outputs	Y	by	passing	inputs	x	through	layers	with	acRvaRon	funcRons	g	as	follows:

Network output in final layerTo	find	weights	and	biases	we	implement	the	loss	funcRon	for	the	NN	on	the	annealer:	

Binary	encode	the	acRvaRon	funcRons	

So	far	simple	NN’s	(single	hidden	layer)	
and	simple	acRvaRon	funcRons	(e.g.	
quadraRc).		

But	works	for	limitless	data!	

e.g.	can	implement	simple	NN’s	for	
classificaRon	problems	(y=0,1)	

Loss function

[Abel, Criado, MS ’22]
• Developed binary encoding of weights 

(discretised)

• Polynomial approximation of activation 
function

• Reduction of binary higher-order 
polynomials into quadratic ones (Ising model)

Krakow                 Kolloquium      Michael Spannowsky             19.10.2022                   66



Details about encoding - our approach

isolated points in RNo . For example if we seek a
set of No yes/no decisions then the outputs live
in ya œ (Z2)No µ RNo . Thus both kinds of prob-
lem can be treated within the general framework
described here.

A typical loss function for supervised learning
is the MSE for the outputs:

L(Y ) = 1
Nd

ÿ

a

|ya ≠ Y (xa)|2 . (5)

This is widely used for general regression prob-
lems. It is also a viable candidate for clas-
sification, although, depending on the training
method, other loss functions, such as the bi-
nary/categorical cross entropy, can be more ef-
fective.

3.2 Training a NN in a quantum annealer
Let us now consider the task at hand, namely
how to encode and train such a NN on a quantum
annealer. Since the purpose of an annealer is to
find the minimum of a function, the Hamiltonian,
we aim to write the loss function L as an Ising
model Hamiltonian. Then, we expect the final
state of the annealing process to give the optimal
NN for the problem under consideration.

The loss is ultimately a function of the inter-
nal parameters of the NN, the weights wij and
biases bi. Meanwhile the Ising model Hamilto-
nian H(‡¸) is a function of the Ising model spins
‡¸. Therefore, as a first step, we need a trans-
lation between the wij , bi parameters and the
‡¸ spins. It is simpler for this purpose to use a
QUBO encoding, related to the spin encoding as

·¸ = 1
2(‡¸ + 1) , (6)

where ·¸ = 0, 1. Then, each of the parameters

p ≥ w
(k)
ij , b

(k)
i is encoded in a binary fashion, in

terms of the annealer spins as

p = ≠1 + 1
1 ≠ 2≠Nb

Nb≠1ÿ

–=0
2≠–

·
p
– . (7)

We will use a superindex p on the · to indicate
which particular block of Nb qubits (labelled by
– = 0 . . . Nb ≠ 1) is being used to encode that
weight or bias. The above encoding yields p œ

[≠1, 1].
Using Eq. (7), we can write the loss as a func-

tion of the Ising model spins · . In general, this
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Figure 2: Polynomial approximations to the popular
ReLU (top) and sigmoid (bottom) activation functions.

will not take the form of an Ising model Hamil-
tonian (defined in Eq. (2)), so the next step is to
transform it into one. For this purpose, we first
approximate the activation function by a polyno-
mial. Since the weights and biases are bounded
in this approach, the input to the activation is
bounded, and therefore a polynomial can approx-
imate it arbitrarily well in the input range. Some
polynomial approximations to standard loss func-
tions are shown in Fig 2.

The use of polynomials as activation functions
is a delicate issue because some versions of the
universal approximation theorem require the ac-
tivation to be non-polynomial. In the present
context, this need not concern us, however, since
the boundedness of the input implies here that
there is boundedness of the output, and this is
enough to guarantee the universal approxima-
tion [34].

The loss function of the output value Y (x) of
the NN can either be a polynomial, as in Eq. (5),
or not. However, the above boundedness argu-
ment can admit its approximation by a poly-
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will not take the form of an Ising model Hamil-
tonian (defined in Eq. (2)), so the next step is to
transform it into one. For this purpose, we first
approximate the activation function by a polyno-
mial. Since the weights and biases are bounded
in this approach, the input to the activation is
bounded, and therefore a polynomial can approx-
imate it arbitrarily well in the input range. Some
polynomial approximations to standard loss func-
tions are shown in Fig 2.

The use of polynomials as activation functions
is a delicate issue because some versions of the
universal approximation theorem require the ac-
tivation to be non-polynomial. In the present
context, this need not concern us, however, since
the boundedness of the input implies here that
there is boundedness of the output, and this is
enough to guarantee the universal approxima-
tion [34].

The loss function of the output value Y (x) of
the NN can either be a polynomial, as in Eq. (5),
or not. However, the above boundedness argu-
ment can admit its approximation by a poly-
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Use QUBO encoding to write 

encode weights of NN

isolated points in RNo . For example if we seek a
set of No yes/no decisions then the outputs live
in ya œ (Z2)No µ RNo . Thus both kinds of prob-
lem can be treated within the general framework
described here.

A typical loss function for supervised learning
is the MSE for the outputs:

L(Y ) = 1
Nd
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|ya ≠ Y (xa)|2 . (5)

This is widely used for general regression prob-
lems. It is also a viable candidate for clas-
sification, although, depending on the training
method, other loss functions, such as the bi-
nary/categorical cross entropy, can be more ef-
fective.

3.2 Training a NN in a quantum annealer
Let us now consider the task at hand, namely
how to encode and train such a NN on a quantum
annealer. Since the purpose of an annealer is to
find the minimum of a function, the Hamiltonian,
we aim to write the loss function L as an Ising
model Hamiltonian. Then, we expect the final
state of the annealing process to give the optimal
NN for the problem under consideration.

The loss is ultimately a function of the inter-
nal parameters of the NN, the weights wij and
biases bi. Meanwhile the Ising model Hamilto-
nian H(‡¸) is a function of the Ising model spins
‡¸. Therefore, as a first step, we need a trans-
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will not take the form of an Ising model Hamil-
tonian (defined in Eq. (2)), so the next step is to
transform it into one. For this purpose, we first
approximate the activation function by a polyno-
mial. Since the weights and biases are bounded
in this approach, the input to the activation is
bounded, and therefore a polynomial can approx-
imate it arbitrarily well in the input range. Some
polynomial approximations to standard loss func-
tions are shown in Fig 2.

The use of polynomials as activation functions
is a delicate issue because some versions of the
universal approximation theorem require the ac-
tivation to be non-polynomial. In the present
context, this need not concern us, however, since
the boundedness of the input implies here that
there is boundedness of the output, and this is
enough to guarantee the universal approxima-
tion [34].

The loss function of the output value Y (x) of
the NN can either be a polynomial, as in Eq. (5),
or not. However, the above boundedness argu-
ment can admit its approximation by a poly-

4

as binary

Express loss function using binary-form weights. 

quadrature procedureProblem: need to convert to Ising model 

Express activation 

function as a 

polynomial:
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Completely Quantum Neural Networks

Reliable and very 
fast ground-state 

finder of loss 
function

Optimal network training

Krakow                 Kolloquium      Michael Spannowsky             19.10.2022                   69



QADE: Solving differential equations with a quantum annealer

Quantum algorithmClassical Neural Network
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Example Laguerre differential equation:
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[Criado, MS ’22]

[Araz, Criado, MS ’21][Piscopo, MS, Waite ’19]
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• Exciting research area that rapidly expands, supported through 
private and public sector. Many algorithms to be invented.

Summary

• Quantum computers are near-to-midterm future experiments that 
can be used to address problems in high-energy physics, shown 
here particle collisions, data analysis and quantum field theory

• For many more exciting applications, need development of technical 
realisation of quantum computers (fault tolerance, coherence, 
operations,…)
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