

Neutrino Physics Selected topics Lecture 2

Tomasz Wąchała

Instytut Fizyki Jądrowej im. H. Niewodniczańskiego Polskiej Akademii Nauk Kraków

Kraków, 16.02.2023

Outline

- Neutrino oscillations
- Reactor neutrinos
- Accelerator neutrinos

Neutrino mixing - basic concept

• Reminder: neutrinos oscillate - change their flavor with time. Experimentally confirmed by a number of experiments: Super Kamiokande, SNO...

• Neutrinos are produced and detected via weak interactions (flavor eigenstates) but propagate in space as the linear superpositions of the mass eigenstates.

Kraków, 16.02.2023

Neutrino mixing - 2 neutrinos example

• Two neutrino example:

• Notice the flavor eigenstates differ from mass eigenstates. Therefore the source produces the linear superposition of the mass eigenstates. In case of two neutrinos:

Kraków, 16.02.2023

Neutrino oscillations principles

• Flavor state written as a superposition of the mass states:

$$\ket{
u_lpha} = \sum_i U_{lpha i} \ket{
u_i},$$

• Mass state propagation (plane wave solutions):

 $\mid
u_j(t) \,
angle = e^{-i \, \left(\, E_j t \, - \, ec p_j \cdot ec x \,
ight)} \mid
u_j(0) \,
angle \,\,,$

• Ultrarelativistic limit energy approximation. This limit applies to all practical (currently observed) neutrinos, since their masses are less than 1 eV and their energies are at least 1 MeV, so the Lorentz factor, γ , is greater than 10⁶ in all cases

$$E_j = \sqrt{p_j^2 + m_j^2} \simeq p_j + rac{m_j^2}{2\,p_j} pprox E + rac{m_j^2}{2\,E} \;, \qquad \qquad |ec p_j| = p_j \gg m_j \;,$$

• Use above and put t=L plus drop phase factors:

$$| \,
u_j(L) \,
angle = e^{-i \left(rac{m_j^2 \, L}{2 \, E}
ight)} \, | \,
u_j(0) \,
angle \, \, .$$

Kraków, 16.02.2023

Neutrino oscillations principles

- Eigenstates with different masses propagate with different frequencies.
- The heavier ones oscillate faster compared to the lighter ones.
- Since the mass eigenstates are combinations of flavor eigenstates, this difference in frequencies causes interference between the corresponding flavor components of each mass eigenstate.
- Constructive interference causes it to be possible to observe a neutrino created with a given flavor to change its flavor during its propagation.

ō.

$$P_{lpha
ightarroweta}\,=\,\Big|ig\langle\,
u_eta\,|\,\,
u_lpha(L)\,ig
angle\,\Big|^2\,=\,\left|\sum_j\,U^*_{lpha j}\,U_{eta j}\,e^{-irac{m_j^2\,L}{2E}}\,
ight|^2\,.$$

$$P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i < j} \Re(J_{ij}^{\alpha\beta}) \sin^2 \Phi_{ij} + 2\sum_{i < j} \Im(J_{ij}^{\alpha\beta}) \sin 2 \Phi_{ij}$$

$$\Phi_{ij} = \Delta m_{ij}^2 \frac{L}{4E} = 1.27 \cdot \Delta m_{ij}^2 [eV^2] \cdot \frac{L[km]}{E[GeV]}$$

Term responsible for oscillation

 $J_{ij}^{\alpha\beta} = U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*$

Mixing matrix elements (Jarlskog invariant)

Kraków, 16.02.2023

Neutrino oscillations (3 flavors)

Pontercorvo-Maki-Nakagawa-Sakata matrix (U_{PNMS})

$$U = U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13} & e^{-i \delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13} & e^{i \delta_{CP}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i < j} \Re(J_{ij}^{\alpha\beta}) \sin^{2} \Phi_{ij} + 2 \sum_{i < j} \Im(J_{ij}^{\alpha\beta}) \sin 2 \Phi_{ij}$$
$$\Phi_{ij} = \Delta m_{ij}^{2} \frac{L}{4E} = 1.27 \cdot \Delta m_{ij}^{2} [eV^{2}] \cdot \frac{L[km]}{E[GeV]} \qquad \qquad J_{ij}^{\alpha\beta} = U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}$$

- Transition probability $P(v_{\alpha} \rightarrow v_{\beta})$ in the case of 3 neutrinos depends on:
 - → 3 mixing angles: θ_{23} , θ_{13} , θ_{12}
 - 1 complex phase: δ_{CP}

- PMNS model parameters
- → 2 independent mass splittings: Δm_{32}^2 , Δm_{12}^2
- → Detector-source distance (L), neutrino energy (E) adjusted experimentally

Neutrino oscillations (3 flavors)

Kraków, 16.02.2023

Oscillations - experimental aspects

- Neutrino oscillation experiments measure:
 - Appearance probability:
 - Disappearance (survival) probability:

 $P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) = ?$ $P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\alpha}) = ?$

- Number of observed (detected) neutrino interactions is proportional to:
 - neutrino-target (eg. neutrino-nucleus) cross section σ ,
 - neutrino flux Φ
 - number of interacting targets (eg. number of target nuclei) T

$$N_{Obs} \approx \sigma * \Phi * T$$

Neutrino oscillations - experiments

v_e appearance), $\overline{v_e}$ disappearance

Table 14.6: Experiments contributing to the present determination of the oscillation parameters.

Experiment	Dominant	Important
Solar Experiments	θ_{12}	$arDelta m_{21}^2$, $ heta_{13}$
Reactor LBL (KamLAND)	Δm_{21}^2	$ heta_{12}$, $ heta_{13}$
Reactor MBL (Daya-Bay, Reno, D-Chooz)	$\theta_{13}, \Delta m^2_{31,32} $	SPECIAL STORE - PROPER
Atmospheric Experiments (SK, IC-DC)	2000 A 100	$ \theta_{23} \Delta m^2_{31,32} , \theta_{13}, \delta_{\rm CP} $
Accel LBL $\nu_{\mu}, \bar{\nu}_{\mu}$, Disapp (K2K, MINOS, T2K, NO ν A)	$ \Delta m^2_{31,32} , \theta_{23} $	
Accel LBL $\nu_e, \bar{\nu}_e$ App (MINOS, T2K, NO ν A)	$\delta_{ m CP}$	$ heta_{13}\;, heta_{23}$

Table 14.2: List of solar neutrino experiments

Name	Target material	Energy threshold (MeV)	Mass (ton)	Years
Homestake	C_2Cl_4	0.814	615	1970 - 1994
SAGE	${\rm Ga}$	0.233	50	1989 -
GALLEX	$GaCl_3$	0.233	100 [30.3 for Ga]	1991 - 1997
GNO	$GaCl_3$	0.233	100 [30.3 for Ga]	1998 - 2003
Kamiokande	H_2O	6.5	3,000	1987 - 1995
Super-Kamiokande	H_2O	3.5	50,000	1996 -
SNO	D_2O	3.5	1,000	1999 - 2006
KamLAND	Liquid scintillator	0.5/5.5	1,000	2001 -
Borexino	Liquid scintillator	0.19	300	2007 -

Kraków, 16.02.2023

Neutrino oscillations - what has been measured?

• Most important open questions:

- → What is the value of δ_{CP}? CP symmetry violation in neutrino sector?
- → What is the neutrino mass ordering? Normal: m₃>m₂>m₁ (NO) or inverted: m₂>m₁>m₃ (IO)?
- → What is the value of θ_{23} ? If not 45 degrees, then in which octant it lies?

Artificial neutrino sources: reactors

- In the nuclear reactors electron antineutrinos are produced as a result of the nuclear fission of heavy isotopes ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu ²³⁵U ²³⁶U
- 6 antineutrinos are produced per one fission reaction
- Typical nuclear powerplant (1 GW reactor) produces 2x10²⁰ antineutrinos per second
- Number of detected antineutrinos is proportional to the reactor power
- There's a long tradition of using reactor antineutrinos to study neutrino properties. It started in 1953 by Reines & Cowan (detector located next to the Savannah River powerplant)

Reines & Cowan detector

Kraków, 16.02.2023

Frederick Reines & Clyde Cowan

Nobel prize for Reines in 1995

Reactor neutrinos

• Reactor experiments are measuring the probability of disappearance of electron antineutrinos from the reactor.

$$P(\bar{\mathbf{v}}_e \rightarrow \bar{\mathbf{v}}_e) = ?$$

- A precise prediction of the antineutrino flux from the nuclear reactor is crucial because we need to compare the measured neutrino spectrum with the predicted one.
- Detailed calculation of the antineutrino flux from the nuclear reactor is challenging (summing up the spectra of beta decays)
 - Fission processes of four main isotopes involves thousands(!) of beta decay branches → The main problem of reactor neutrino experiments is the neutrino flux calculation
 - Many improvements in the reactor neutrino flux calculations recently.
- Currently operating reactor neutrino experiments:

Name	Reactor power (GW_{th})	Baseline (km)	Detector mass (t)	Year
KamLAND	various	180 (ave.)	1,000	2001 -
Double Chooz	4.25×2	1.05	8.3	2011-2018
Daya Bay	$2.9{ imes}6$	1.65	20×4	2011 -
RENO	$2.8{\times}6$	1.38	16	2011 -
JUNO	26.6 (total)	53	20,000	

Figure 14.7: Ratio of the observed $\bar{\nu}_e$ spectrum to the expectation for no-oscillation versus L_0/E for the KamLAND data. $L_0 = 180$ km is the flux-weighted average reactor baseline. The $3-\nu$ histogram is the best-fit survival probability curve from the three-flavour unbinned maximum-likelihood analysis using only the KamLAND data. This figure is taken from [150].

Artificial neutrino sources: accelerators

- The main principle behind the production accelerator neutrinos is an analogy to atmospheric neutrino production mechanism
 - Accelerate protons to high energies with the accelerator
 - Collide protons with the target (eg. graphite) and produce secondary particles, mainly pions
 - Let the pions decay and produce neutrinos

- Some extra ideas in accelerator neutrino production:
 - Focus charged pions with the same sign (and deflect pions with opposite sign) with magnetic horns (toroidal magnetic field).
 - Ultimately able to get either neutrino (positive pions are focused) or antineutrino (negative pions are focused) beam.
 - \checkmark Can change the polarity of the horns \rightarrow one experiment can operate in two modes: neutrino or antineutrino mode
 - Stop muons produced in the charged pion decay using a block of graphite and iron → beam dump.

Accelerator neutrinos

Kraków, 16.02.2023

Accelerator neutrinos

Near detector example (T2K)

Kraków, 16.02.2023

• Off-axis detector:

- Several sub-detectors in 0.2T magnetic field:
 - Tracker (TPC + FGD), pizero detector (P0D), electromagnetic calorimenter (ECAL), muon ranger (SMRD)
- Measures the neutrino flux before the oscillations occur
- $\textbf{\textbf{+}}$ Measures intrinsic ν_{e} contamination
- Measures neutrino interaction cross sections
- On-axis detector (INGRID):
 - → 16 iron-scintillator modules form the cross
 - → Monitoring flux, direction and stability of the neutrino beam
 - Neutrino cross section measurements

T.Wąchała, Neutrino Physics

Far detector (T2K)

- Measures the oscillated neutrino spectrum
- Super-Kamiokande (operating since 1996):
 - Water Cherenkov (50 kt, 22.5 kt fiducial volume).
 - → 11 000 (inner) + 2000 (outer) photomultipliers
 - → Neutrino energy resolution ~10%
 - Particle identification:
 - Good electron-muon discrimination (<1% muons identified as electrons)
 - \checkmark Neutral pion detection (rejecting background from neutrino interactions with π^{0}).

Off-axis beam concept

- Currently two world leading accelerator experiments (T2K, NOvA) use 'off-axis' beam idea:
 - → Pion decay kinematic effect
 - Thin energy spectrum with the mean energy tuned to the neutrino oscillation probability
 - Lower background from high energy interactions that are difficult to reconstruct

Accelerator neutrino oscillations

Accelerator neutrino oscillations

Electron neutrino/antineutrino appearance in the muon neutrino/antineutrino beam (v_e /anti- v_e appearance)

CP violation in neutrino sector?

Neutrino interaction modelling

Accelerator neutrino experiments

Name	Beamline	Far Detector	L (km)	E_{ν} (GeV)	Year	
K2K	KEK-PS	Water Cherenkov	250	1.3	1999-2004	
MINOS	NuMI	Iron-scintillator	735	3	2005-2013	
MINOS+	NuMI	Iron-scintillator	735	7	2013-2016	
OPERA	CNGS	Emulsion	730	17	2008-2012	
ICARUS	CNGS	Liquid argon TPC	730	17	2010-2012	
T2K	J-PARC	Water Cherenkov	295	0.6	2010 -	
NOvA	NuMI	Liquid scint. tracking calorimeter	810	2	2014 -	

- History of accelerator neutrino studies and major results:
 - → K2K (Japan): confirmed atmospheric neutrino oscillations discovered by Super-Kamiokande
 - → MINOS, MINOS+ (USA): measured atmospheric neutrino oscillations Δm_{32}^2 , θ_{23}
 - → OPERA (Italy): confirmed $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations
 - ICARUS (Italy): first neutrino detector using liquid argon Time Projection Chambers technique
 - → T2K (Japan): θ_{13} angle measurement, Δm_{32}^2 measurement, first measurement of δ_{CP} phase
 - → NOvA (USA): θ_{13} angle measurement, δ_{CP} phase measurement, mass ordering

Future experiments

- DUNE (USA)
 - → USA flagship accelerator neutrino project.
 - Neutrino beam produced in Fermilab (1.2 MW and 2.4 MW power after upgrade)
 - → 10 kton or larger liquid argon detector in South Dakota (1300 km from Fermilab) 1.5 km underground.
 - Two prototype far detectors are at the European research center CERN. The first started taking data in September 2018 and the second is under construction.
 - → Should be able to measure δ_{CP} ~ 20 degree accuracy (~10 degrees after beam upgrade).
 - → Start ~2028

- Hyper-Kamiokande (Japan)
 - T2K experiment extension with larger far detector.
 - High-intensity neutrino beam (1.7 MW) from J-PARC complex
 - Far detector 0.5 kton water Cherenkov 300 km from J-PARC.
 - → Measuring δ_{CP} with accuracy of 18 degrees but depends on mass ordering measurements.
 - → Start ~2027

Summary

- Today covered:
 - Neutrino Oscillations
 - Artificial neutrino sources: reactor, accelerator
- To remember:
 - How are reactor neutrinos produced and measured?
 - → Accelerator neutrinos: production, oscillations, CP violation
 - → References:
 - PDG, Neutrino Masses, Mixing and Oscillations review (pdg.lbl.gov)
 - M. Zito, Neutrino masses and mixing lectures

Backup slides

Table 14.7: 3ν oscillation parameters obtained from different global analyses of neutrino data. In all cases, the numbers labeled as NO (IO) are obtained assuming NO (IO), *i.e.*, relative to the respective local minimum. SK-ATM makes reference to the tabulated χ^2 map from the Super-Kamiokande analysis of their data in Ref. [97].

	Ref. [185] w/o SK-ATM		Ref. [185] w SK-ATM		Ref. [186] w SK-ATM		Ref. [187] w SK-ATM	
NO	Best Fit Ordering		Best Fit Ordering		Best Fit Ordering		Best Fit Ordering	
Param	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\frac{\sin^2 \theta_{12}}{10^{-1}}$	$3.10^{+0.13}_{-0.12}$	$2.75 \rightarrow 3.50$	$3.10\substack{+0.13 \\ -0.12}$	$2.75 \rightarrow 3.50$	$3.04\substack{+0.14 \\ -0.13}$	$2.65 \rightarrow 3.46$	$3.20\substack{+0.20 \\ -0.16}$	$2.73 \rightarrow 3.79$
$\theta_{12}/^{\circ}$	$33.82\substack{+0.78\\-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.46_{-0.88}^{+0.87}$	$30.98 \rightarrow 36.03$	$34.5^{+1.2}_{-1.0}$	$31.5 \rightarrow 38.0$
$\frac{\sin^2 \theta_{23}}{10^{-1}}$	$5.58^{+0.20}_{-0.33}$	$4.27 \rightarrow 6.09$	$5.63^{\pm 0.18}_{-0.24}$	$4.33 \rightarrow 6.09$	$5.51\substack{+0.19 \\ -0.80}$	$4.30 \rightarrow 6.02$	$5.47\substack{+0.20 \\ -0.30}$	$4.45 \rightarrow 5.99$
$\theta_{23}/^{\circ}$	$48.3^{+1.2}_{-1.9}$	$40.8 \rightarrow 51.3$	$48.6^{+1.0}_{-1.4}$	$41.1 \rightarrow 51.3$	$47.9^{+1.1}_{-4.0}$	$41.0 \rightarrow 50.9$	$47.7^{+1.2}_{-1.7}$	$41.8 \rightarrow 50.7$
$\frac{\sin^2 \theta_{13}}{10^{-2}}$	$2.241\substack{+0.066\\-0.065}$	$2.046 \rightarrow 2.440$	$2.237\substack{+0.066\\-0.065}$	$2.044 \rightarrow 2.435$	$2.14\substack{+0.09 \\ -0.07}$	$1.90 \rightarrow 2.39$	$2.160\substack{+0.083 \\ -0.069}$	$1.96 \rightarrow 2.41$
$\theta_{13}/^{\circ}$	$8.61^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.99$	$8.60^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.98$	$8.41^{+0.18}_{-0.14}$	7.9 ightarrow 8.9	$8.45^{+0.16}_{-0.14}$	8.0 ightarrow 8.9
$\delta_{\rm CP}/^{\circ}$	222^{+38}_{-28}	$141 \to 370$	221^{+39}_{-28}	$144 \rightarrow 357$	238^{+41}_{-33}	$149 \to 358$	218^{+38}_{-27}	$157 \to 349$
$\frac{\Delta m^2_{21}}{10^{-5} \text{ gV}^2}$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	$7.34\substack{+0.17 \\ -0.14}$	$6.92 \rightarrow 7.91$	$7.55\substack{+0.20 \\ -0.16}$	$7.05 \rightarrow 8.24$
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2}$	$2.449\substack{+0.032 \\ -0.030}$	$2.358 \rightarrow 2.544$	$2.454\substack{+0.029\\-0.031}$	$2.362 \rightarrow 2.544$	$2.419\substack{+0.035\\-0.032}$	$2.319 \rightarrow 2.521$	2.424 ± 0.03	$2.334 \rightarrow 2.524$
IO	$\Delta \chi$	$^{2} = 6.2$	$\Delta \chi^2 = 10.4$		$\Delta \chi^2 = 9.5$		$\Delta \chi^2 = 11.7$	
$\frac{\sin^2 \theta_{12}}{10^{-1}}$	$3.10\substack{+0.13\\-0.12}$	$2.75 \rightarrow 3.50$	$3.10\substack{+0.13 \\ -0.12}$	$2.75 \rightarrow 3.50$	$3.03\substack{+0.14 \\ -0.13}$	$2.64 \rightarrow 3.45$	$3.20\substack{+0.20 \\ -0.16}$	2.73 ightarrow 3.79
$\theta_{12}/^{\circ}$	$33.82\substack{+0.78 \\ -0.76}$	$31.61 \rightarrow 36.27$	$33.82\substack{+0.78 \\ -0.75}$	$31.62 \rightarrow 36.27$	$33.40^{+0.87}_{-0.81}$	$30.92 \rightarrow 35.97$	$34.5^{+1.2}_{-1.0}$	$31.5 \rightarrow 38.0$
$\frac{\sin^2 \theta_{23}}{10^{-1}}$	$5.63\substack{+0.19 \\ -0.26}$	$4.30 \rightarrow 6.12$	$5.65\substack{+0.17\\-0.22}$	$4.36 \rightarrow 6.10$	$5.57\substack{+0.17 \\ -0.24}$	$4.44 \rightarrow 6.03$	$5.51\substack{+0.18 \\ -0.30}$	$4.53 \rightarrow 5.98$
$\theta_{23}/^{\circ}$	$48.6^{+1.1}_{-1.5}$	$41.0 \rightarrow 51.5$	$48.8^{+1.0}_{-1.2}$	$41.4 \rightarrow 51.3$	$48.2^{+1.0}_{-1.4}$	$41.8 \rightarrow 50.9$	$47.9^{+1.0}_{-1.7}$	$42.3 \rightarrow 50.7$
$\frac{\sin^2 \theta_{13}}{10^{-2}}$	$2.261\substack{+0.067\\-0.064}$	$2.066 \rightarrow 2.461$	$2.259\substack{+0.065\\-0.065}$	$2.064 \rightarrow 2.457$	$2.18\substack{+0.08 \\ -0.07}$	$1.95 \rightarrow 2.43$	$2.220\substack{+0.074 \\ -0.076}$	$1.99 \rightarrow 2.44$
$\theta_{13}/^{\circ}$	$8.65^{+0.13}_{-0.12}$	$8.26 \rightarrow 9.02$	$8.64^{+0.12}_{-0.13}$	$8.26 \rightarrow 9.02$	$8.49^{+0.15}_{-0.14}$	$8.0 \rightarrow 9.0$	$8.53^{+0.14}_{-0.15}$	$8.1 \rightarrow 9.0$
$\delta_{\rm CP}/^{\circ}$	285^{+24}_{-26}	$205 \to 354$	282^{+23}_{-25}	$205 \rightarrow 348$	247^{+26}_{-27}	$193 \to 346$	281^{+23}_{-27}	$202 \rightarrow 349$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ gV}^2}$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	$7.34\substack{+0.17 \\ -0.14}$	$6.92 \rightarrow 7.91$	$7.55\substack{+0.20 \\ -0.16}$	$7.05 \rightarrow 8.24$
$\frac{\Delta m_{32}^2}{10^{-3} \ {\rm eV}^2}$	$-2.509^{+0.032}_{-0.032}$	$-2.603 \rightarrow -2.416$	$-2.510^{+0.030}_{-0.031}$	$-2.601 \rightarrow -2.419$	$-2.478^{+0.035}_{-0.033}$	$-2.577 \rightarrow -2.375$	$-2.50\pm^{+0.04}_{-0.03}$	$-2.59 \rightarrow -2.39$

Oscillation length

Equation (14.39) is oscillatory in distance with oscillation lengths

$$L_{0,ij}^{\rm osc} = \frac{4\pi E}{|\Delta m_{ij}^2|} , \qquad (14.41)$$

and with amplitudes proportional to products of elements in the mixing matrix. Thus, neutrinos must have different masses $(\Delta m_{ij}^2 \neq 0)$ and they must have not vanishing mixing $(U_{\alpha_i}U_{\beta_i} \neq 0)$ in order to undergo flavour oscillations. Also, from Eq.(14.39) we see that the Majorana phases

Off-axis Neutrino Beams

🛟 Fermilab

Neutrino oscillations - interference

Two-slits (masses) quantum interference experiments !

"Neutrino oscillation" is due to the phase shift between the lighter states (in advance with respect to phase) versus the heavier. Out of phase linear superposition means the other flavor eigenstates (not present at t=0) appear during the propagation.

Source

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

NxN unitary matrix, N(N-1)/2 angles, N(N+1)/2 phases (2N**2 real parameters, Unitarity: N conditions on the diagonal+ $\frac{1}{2}N(N-1)$ Im(V1k V2k*=0) + $\frac{1}{2}N(N-1)$ Re(V1k V2k*=0) =>N**2 real parameters)

N phases can be rotated away by redefining the charged lepton fields N-1 phases can be rotated away by redefining the neutrino fields However this is not possible if Majorana (not invariant under U(1))

How many physical phases? (N-1)(N-2)/2 phases in general (N-1) additional phases if Majorana

TES School Buymerovka July 2008

Marco Zito

 $U = U' \cdot \begin{bmatrix} e^{i\phi_2} & & \\ & \ddots & \\ & & \ddots & \\ & & & i\phi_n \end{bmatrix}$

Classical analogy

• Time evolution of the pendulums

• Lower frequency normal mode

Higher frequency normal mode

Kraków, 16.02.2023

v appearance measurement

Phys.Rev.Lett. 112 (2014) 061802

 28 electron neutrino candidates in the far detector, 4.92 ± 0.55 candidates predicted for the nooscillation hypothesis

• Best fit (N.H,
$$\delta_{CP}=0$$
):
 $\sin^2 2\theta_{13}=0.140^{+0.038}_{-0.032}$

- 7.3 σ significance for non-zero θ_{13} .
- Discovery of v_e appearance in v_{μ} beam!

T2K v disappearance measurement

Phys.Rev.Lett. 112 (2014) 181801

- 120 muon neutrino candidates in the far detector, 446±22.5 candidates predicted for nooscillation hypothesis
- Best fit value (N.H.): $\sin^2 \theta_{23} = 0.514^{+0.055}_{-0.056}$
- World's best θ_{23} measurement!
- T2K prefers maximal mixing (θ₂₃ equal 45 degrees)

