# Heavy flavour physics

# Lecture 3

Marcin Kucharczyk

IFJ PAN, Kraków 08 December 2022

#### Contents

#### Lecture 3

- Measurement of CKM angle  $\boldsymbol{\gamma}$
- QCD penguins
- $B_s$  mixing
- Electroweak penguins
- Higgs penguins

# Measurements of CKM angles

### 3rd CKM measurement: $\gamma$

Extract  $\gamma$  with  $B \rightarrow D^{(*)}K^{(*)}$  final states using:

- GLW: Use CP eigenstates of D<sup>0</sup>
- ADS: Interference between favoured and doubly suppressed decays
- GGSZ: Use the Dalitz structure of  $D \rightarrow K_s h^+h^-$  decays



#### Measurement of $\gamma$

- Charmless B decays, eg.  $B^0 \rightarrow K^+\pi^-$ 
  - $\rightarrow$  contributions from
    - P :  $b \rightarrow su(bar)u$  penguin
    - T :  $b \rightarrow usu(bar)$  tree
  - $\rightarrow$  relative weak (CP violating) phase is  $\gamma$
  - ightarrow relative strong (CP conserving) phase  $\delta$

 $\mathsf{A}_{\mathsf{CP}} = 2|\mathsf{P}||\mathsf{T}|\mathsf{sin}(\gamma)\mathsf{sin}(\delta)/\{|\mathsf{P}|^2 + |\mathsf{T}|^2 + 2|\mathsf{P}||\mathsf{T}|\mathsf{cos}(\gamma)\mathsf{cos}(\delta)\}$ 

- Hadronic uncertainties:
  - $\rightarrow$  even if we observe A<sub>CP</sub>  $\neq$  0, cannot easily extract  $\gamma$
  - $\rightarrow$  other processes also contribute
- A theoretically clean measurement of  $\gamma$  can be made using B  $\rightarrow$  DK decays
- Reconstruct D mesons in states accessible to both D<sup>0</sup> and D<sup>0</sup>(bar)
  - $\rightarrow$  interference between  $b \rightarrow cu(bar)s$  and  $b \rightarrow uc(bar)s$
  - $\rightarrow$  relative weak phase is  $\gamma$
  - $\rightarrow$  various different D decays utilized
  - $\rightarrow$  large statistical errors at present

### The idea of measurement

• Two possible diagrams for  $B^-{\rightarrow}DK^-$ 



$$\propto V_{cb}V_{us}^*$$

- colour allowed
- final state contains D<sup>0</sup>

- $\propto V_{ub}V_{cs}^*$
- colour suppressed
- final state contains *D*<sup>0</sup>(*bar*)
- Relative magnitude of suppressed amplitude is  $r_B$
- Relative weak phase is  $-\gamma$ , relative strong phase is  $\delta_B$
- Need D<sup>0</sup> and D<sup>0</sup>(bar) to decay to common final state

#### Three ways to make DK interfere

$$\begin{array}{ll} \mathsf{GLW}(\textit{Gronau, London, Wyler}) \text{ method:} & \operatorname{more sensitive to } r_{\scriptscriptstyle B} \\ \text{uses the CP eigenstates } \mathsf{D}^{(^*)0}{}_{\sf CP} \text{ with final states:} \\ \mathsf{K}^+\mathsf{K}^-, \, \pi^+\pi^- \, (\mathsf{CP}\text{-even}), \, \mathsf{K}_{\scriptscriptstyle S}\pi^0 \, (\omega, \varphi) \, (\mathsf{CP}\text{-odd}) \\ \hline R_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos\gamma\cos\delta_B \quad A_{CP\pm} = \frac{\pm 2r_B\sin\gamma\sin\delta_B}{1 + r_B^2 \pm 2r_B\cos\gamma\cos\delta_B} \\ \mathsf{ADS}(Atwood, Dunietz, Soni) \text{ method: } \mathsf{B}^0 \text{ and } \overline{\mathsf{B}}^0 \text{ in the same} \\ \operatorname{final state with } \mathsf{D}^0 \to \mathsf{K}^+\pi^- (\operatorname{suppr.}) \text{ and } \overline{\mathsf{D}}^0 \to \mathsf{K}^+\pi^- (\operatorname{fav.}) \\ \hline R_{ADS} = r_B^2 + r_{DCS}^2 + 2r_Br_{DCS}\cos\gamma\cos(\delta_B + \delta_D) \end{array}$$

the most sensitive way to  $\gamma$ 

 $D^{\scriptscriptstyle 0}$  Dalitz plot with the decays  $B^{\scriptscriptstyle -} \to D^{(^*)0}[K_{\scriptscriptstyle S}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}]~K^{\scriptscriptstyle -}$ 

#### 3 free parameters to extract: $\gamma$ , $r_B$ and $\delta_B$





significant progress in many of these over the last few years (including some new results not yet in the PDG compilation)

## FCNC loops in the SM

Map of flavour transitions and types of loop processes



QCD penguin

 $\Delta F=2 \text{ box}$ 

EW penguin

Higgs penguin

|               | b→s                                                                    | b→d                                                  | c→u                     | s→d                               |
|---------------|------------------------------------------------------------------------|------------------------------------------------------|-------------------------|-----------------------------------|
| QCD penguin   | A <sub>CP</sub> (B <sub>s</sub> →hhh)                                  | A <sub>CP</sub> (B⁰→hhh)                             | ∆a <sub>cP</sub> (D→hh) | K→π <sup>0</sup> II<br>ε' /ε      |
| ∆F=2 box      | <mark>∆M<sub>Bs</sub></mark><br>A <sub>CP</sub> (B <sub>s</sub> →J/ψφ) | $\Delta M_{Bd} = A_{CP}(B^0 \rightarrow J/\psi K_s)$ | x,y, q/p                | ΔM <sub>K</sub><br>ε <sub>K</sub> |
| EW penguin    | <mark>Β→Κ(*)</mark> μμ<br>Β→Χ <sub>s</sub> γ                           | Β→πμμ<br>Β→Χγ                                        | D→X <sub>u</sub> II     | K→ $π^0$ II<br>K→ $π^{\pm}$ νν    |
| Higgs penguin | <b>Β</b> ₅→μμ                                                          | Β⁰→μμ                                                | D→µµ                    | <b>Κ⁰→</b> μμ                     |

# QCD penguins

### Search for CP violation in charm decays

#### **Charm physics**

- Neutral D meson offers the only chance to study  $\Delta F = 2$  (mixing) phenomena among up-type quarks
- FCNC in decays can also be studied
- CP violation in the D system is tiny in the SM, and hence its study probes New Physics
  - $\rightarrow$  precise measurements needed to test realistic NP models

### CP violation in charm

- Charm:
  - $\rightarrow$  direct CP violation (in decay) in SM is small
  - $\rightarrow$  could there be large **direct CP violation** in charm **penguin decays**?
  - $\rightarrow$  CP violation O(1%) would be "clear sign for NP"



Time integrated  $A_{CP}$  has both direct and indirect components

### CP violation in charm: $\Delta A_{CP}$

$$A_{\rm raw}(f) = A_{CP}(f) + A_{\rm D}(f) + A_{\rm P}(D^{*+})$$

- Physical CP asymmetry (very small)
- Detection asymmetry, cancels for  $D^0 \rightarrow \pi\pi$ , KK large O(1%)
- Production asymmetry

$$\Delta \mathsf{A}_{\mathsf{CP}} = \mathsf{A}_{\mathsf{raw}}(\mathsf{K}^{-}\mathsf{K}^{+}) - \mathsf{A}_{\mathsf{raw}}(\pi^{-}\pi^{+}) = \mathsf{A}_{\mathsf{CP}}(\mathsf{K}^{-}\mathsf{K}^{+}) - \mathsf{A}_{\mathsf{CP}}(\pi^{-}\pi^{+})$$

w/ U-spin symmetry:  $A_{CP}(K^{-}K^{+}) = -A_{CP}(\pi^{-}\pi^{+})$ 

### CP violation in charm: $\Delta A_{CP}$

- $\bullet$   $\Delta A_{CP}$  cancels detector and production asymmetries to first order
- The SM, and most NP models, predict opposite sign for KK and пп
- Use of U-spin and QCD factorization leads to:

 $\Delta A_{CP} \sim 4$  penguin/tree  $\sim 0.04\%$ 

#### Analysis:

- LHCb performed two (experimentally orthogonal) measurements
- $D^{*\pm} \rightarrow D^0$  [h<sup>+</sup>h<sup>-</sup>]  $\pi^{\pm}$  pion's charge determines the flavour of  $D^0$
- Alternatively, using  $B \to D \ \mu \nu$  decays the muon's charge determines the flavour.
- Most of the systematics cancel in the subtraction, and are controlled by swapping the magnetic field

#### Measure CP violation: $D^{*+} \rightarrow D^0 \pi^+$

- LHCb performed two independent measurements
  - $\rightarrow$  "D\* tagged": D\* $\pm$   $\rightarrow$  D0 ( $\rightarrow$  K+K- or  $\pi^+\pi^-$ )  $\pi^\pm$ 
    - pion charge determines D<sup>0</sup> production flavour





#### Measure CP violation: $D^{*+} \rightarrow D^0 \pi^+$

- LHCb performed two (experimentally orthogonal) measurements
  - $\rightarrow$  "Muon tagged":  $B^{\pm} \rightarrow D^0 (\rightarrow K^+K^{\mbox{-}} \mbox{ or } \pi^+\pi^{\mbox{-}}) \ \mu^{\pm} \ v \ X$ 
    - muon charge determines D<sup>0</sup> production flavour





#### Measure CP violation: $D^{*+} \rightarrow D^0 \pi^+$



#### No significant evidence for CP violation Effects O(%) are out of the game

 $\Delta F=2$  boxes:  $B_s$  mixing

#### Neutral meson mixing

The eigenstates of flavour M<sup>0</sup>, anti-M<sup>0</sup>, degenerated in pure QCD, mix under weak interactions:  $M^0$ : K<sup>0</sup> (anti-s d), D<sup>0</sup>(c anti-u), B<sup>0</sup>(anti-b d), B<sub>s</sub><sup>0</sup>(anti-b s)

Mixing can occur via **short distance** or **long distance** processes:





Time-dependent Schrödinger equation

$$i\frac{\partial}{\partial t}\left(\frac{M^{0}}{M^{0}}\right) = H\left(\frac{M^{0}}{M^{0}}\right) = \left(M - \frac{i}{2}\Gamma\right)\left(\frac{M^{0}}{M^{0}}\right)$$

**H** is Hamiltonian; **M** and  $\Gamma$  are 2x2 Hermitian matrices

CPT theorem:  $M_{11} = M_{22} \& \Gamma_{11} = \Gamma_{22}$ 

 $\rightarrow$  particle and antiparticle have equal masses and lifetimes

### Mixing formalism

Time evolution of B<sup>0</sup> or B<sup>0</sup>(bar) can be described by an *effective* Hamiltonian

$$\mathcal{H} = M - \frac{i}{2}\Gamma = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{i}{2}\begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$$

$$\stackrel{\text{hermitian}}{\overset{\text{hermitian}}{\overset{\text{Mass term:}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{hermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{hermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{\text{mermitian}}{\overset{mermitian}}{\overset{mermitian}}}}}}}}}}}}}}$$

$$i\frac{d}{dt}\left(\begin{array}{c}|B^{0}(t)\rangle\\|\overline{B}^{0}(t)\rangle\end{array}\right) = \mathcal{H}\left(\begin{array}{c}|B^{0}(t)\rangle\\|\overline{B}^{0}(t)\rangle\end{array}\right)$$

Define the mass eigenstates (physical states):  $|B_{H,L}\rangle = p|B^0\rangle \mp q|\overline{B}^0\rangle$ 

p & q complex coefficients that satisfy  $|p|^2 + |q|^2 = 1$ 

Heavy and light mass eigenstates have time dependence:  $|B_{H,L}(t)\rangle = e^{-(im_{H,L}+\Gamma_{H,L}/2)t}|B_{H,L}(0)\rangle$ 

Diagonalising  $\rightarrow$  the mass and decay width difference

$$\Delta m = m_{B_H} - m_{B_L} = 2 |M_{12}|$$
  

$$\Delta \Gamma = \Gamma_L - \Gamma_H = 2 |\Gamma_{12}| \cos \phi$$
  

$$\phi = \arg \left(-M_{12}/\Gamma_{12}\right)$$

S,L (short-, long-) or L,H (light, heavy) depending on values of  $\Delta m \& \Delta \Gamma$  (1,2 usually for CP eigenstates)

### Mixing formalism

Solving the Schrödinger equation gives:

$$\frac{q}{p} = -\sqrt{\frac{M_{12}^* - i\Gamma_{12}^*/2}{M_{12} - i\Gamma_{12}/2}} \qquad \Delta m = 2 \operatorname{Re} \sqrt{(M_{12} - i\Gamma_{12}/2) (M_{12}^* - i\Gamma_{12}^*/2)} \\ \Delta \Gamma = 2 \operatorname{Im} \sqrt{(M_{12} - i\Gamma_{12}/2) (M_{12}^* - i\Gamma_{12}^*/2)}$$

- $\bullet$   $\Delta m$ : value depends on rate of mixing diagram
  - $\rightarrow$  short distance, virtual (off shell)
- ΔΓ: value depends on widths of decays into common final states (CP-eigenstates)
  - $\rightarrow$  long distance, on shell states
  - $\rightarrow$  large for  $K^0,$  small for  $D^0$  &  $B^0$





- q/p  $\approx$  1 if arg( $\Gamma_{12}/M_{12}$ )  $\approx$  0 (|q/p|  $\approx$  1 if  $M_{12} << \Gamma_{12}$  or  $M_{12} >> \Gamma_{12}$ )
  - $\rightarrow$  CP conserved if physical states = CP eigenstates (|q/p| =1)
  - $\rightarrow$  CP violation in mixing when mass eigenstates  $\neq$  CP eigenstates |q/p|  $\neq$  1

# Mixing of neutral mesons

4 different neutral meson systems have very different mixing properties:

- B<sub>s</sub> system
  - $\rightarrow$  very fast mixing
- Kaon system
  - $\rightarrow$  large decay time difference
- Charm system
  - $\rightarrow$  very slow mixing

x: the average number of oscillations before decay y: the relative decay width



difference

### Kaon and charm mixing

#### • Kaon mixing

- $\rightarrow$  CPLEAR experiment
  - tag strangeness of initial kaon using charge of associated kaon from production pp(bar)  $\to$  K+K<sup>0</sup>(bar)n<sup>-</sup> / K<sup>-</sup>K<sup>0</sup>n<sup>+</sup>

#### • Charm mixing

- $\rightarrow$  evidence (3 $\sigma$ ) for charm mixing in 2007 from BaBar & Belle
- $\rightarrow$  followed by further evidence from CDF
- → combined significance of mixing overwhelming, but no single 5σ measurement until LHCb
- → time-dependence of ratio of wrong-sign (WS) to right-sign (RS)  $D^0 \rightarrow K\pi$  decays
  - WS/RS known by  $D^{*+} \to D^0 \pi$  tag



## B<sup>0</sup>-B<sup>0</sup>(bar) oscillations

#### **First evidence**

- Same sign leptons
  - $\rightarrow$  same flavour B mesons
- Mixing probability is large
  - $\rightarrow$  top quark is heavy
- Mixing probability:  $r = 0.21 \pm 0.08$
- PDG 2006: r = 0.188 ± 0.003
- From 103/pb of data

#### **B** mixing with current data sets

• Belle experiment (2005)

 $\Delta m = (0.511 \pm 0.005 \pm 0.006) \text{ ps}^{-1}$ 

• From 140/fb of data

ARGUS experiment (1987)  $B^{0} \rightarrow D^{*-}\mu^{+}\nu$ 



 $P(\Delta t) = (1 \pm \cos(\Delta m \Delta t))e^{-|\Delta t|}/2\tau$ 

# $B_s$ - $B_s$ (bar) oscillations

Dominant Feynman diagrams (Standard Model)



$$\Delta m_s = m_H - m_L = 2|M_{12}|$$
$$\Delta \Gamma_s = \Gamma_L - \Gamma_H$$
$$\phi_M = \arg(M_{12})$$

These oscillations were first observed at the Tevatron in 2006:

$$\Delta m_s = 17.77 \pm 0.10(\text{stat}) \pm 0.07 (\text{sys}) \text{ ps}^{-1}$$

Now this measurement has been repeated with much better precision by LHCb



### LHCb: $\Delta m_s$ from $B_s \rightarrow D_s \Pi$



- Very high statistics
- Low background level
- $\bullet$  Can resolve  ${\rm B}_{\rm s}$  mixing frequency due to high boost

Use flavour tagging to determine flavour at production, pion charge for flavour at decay



### Flavour tagging at hadron colliders

Tagging efficiency  $\varepsilon = \frac{\# tagged \ candidates}{\# \ all \ candidates}$ 



$$0 = (1 - 2\omega)^{2}$$

Dilution



- exploits  $b\overline{b}$  pair production by partially reconstructing the second B-hadron in the event
- Same side kaon tagger
  - exploits hadronization of signal B<sub>s</sub>-meson
- Combined tagging power (in  $B_s^0 \rightarrow D_s^- \pi^+$ ) •  $\epsilon D^2 = 3.5 \pm 0.5\%$

Compare this to  $e^+e^-$  colliders:  $\epsilon D^2 \sim 30\%$ 



### LHCb: $\Delta m_s$ from $B_s \rightarrow D_s \Pi$

#### What is needed to measure $\Delta m_s$ ?

- Resolve the fast  $B_s$  oscillations ( $\rightarrow$  average decay time resolution  $\sim$ 45 fs)
- Decays into flavour specific final state:  $B_s \rightarrow D_s \pi$  ( $\rightarrow$  high BR ~ 0.3%)
- Tag the  $B_s$  flavour at production
  - $\rightarrow$  high efficiency and low mistag rate
  - $\rightarrow$  tagging power: ~4%



#### Most precise measurement of $\Delta m_s$

#### Marcin Kucharczyk

### Constraints from mixing

- $\bullet \ \Delta m_d$  contains information on  $|V_{td}|$
- $\bullet~\Delta m_d$  /  $\Delta m_s$  preferred since theoretically cleaner

$$\rightarrow$$
 constraint on  $R_t = \left| \frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*} \right|$ 



# $\Delta F=1:$ Electroweak penguins

### $b \rightarrow s$ transitions

 $\bullet$  b  $\rightarrow$  s I+I- processes also governed by FCNCs

 $\rightarrow$  rates and asymmetries of many exclusive processes sensitive to NP

- Golden  $\Delta F{=}1$  EW penguin decay:  $B_d \rightarrow K^{*0} \mu^+ \mu^-$ 
  - $\rightarrow$  superb laboratory for NP tests
  - $\rightarrow$  experimentally clean signature
  - $\rightarrow$  many kinematic variables ...
  - $\rightarrow$  with clean theoretical predictions (at least at low q<sup>2</sup>)



### $b \rightarrow s$ transitions: theoretical framework

Describe  $b \rightarrow s$  transitions by an effective Hamiltonian

$$H_{eff} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \sum_{i} \left[ \underbrace{C_{i}(\mu)O_{i}(\mu)}_{\text{left-handed part}} + \underbrace{C_{i}'(\mu)O_{i}'(\mu)}_{\text{right-handed part}} \right] \begin{bmatrix} i=1,2 & \text{Tree} \\ i=3-6,8 & \text{Gluon penguin} \\ i=7 & \text{Photon penguin} \\ i=9,10 & \text{Electroweak penguin} \\ i=8 & \text{Higgs (scalar) penguin} \\ i=P & \text{Pseudoscalar penguin} \end{bmatrix}$$

- $\bullet$  long distance effects absorbed in the definition of the operators  $O_{i}$
- interesting short distance can be computed perturbatively in Wilson coefficients C<sub>i</sub>
- $b \rightarrow s$  transitions are sensitive to:  $O_7(`)$ ,  $O_9(`)$ ,  $O_{10}(`)$



- $B^0 \rightarrow K^* \mu^+ \mu^-$  is the most prominent channel (large statistics & flavour specific)
- Studies with rarer  $B_s \rightarrow \phi \ \mu^+\mu^-$ ,  $\Lambda^0_b \rightarrow \Lambda \ \mu^+\mu^-$ , ... have started

# $B^0 \rightarrow K^* \mu^+ \mu^-$ - angular analysis

- $B^0 \rightarrow K^* \mu^+ \mu^-$  is the golden mode to test new vector(-axial) couplings in b  $\rightarrow$  s transitions
- $K^* \rightarrow K\pi$  is self tagged, hence angular analysis ideal to test helicity structure
- Sensitivity to O<sub>7</sub>, O<sub>9</sub> and O<sub>10</sub> and their primed counterparts:

$$\begin{aligned} & Q_7 = \frac{e}{g^2} m_b \, \bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu}^{I=1} b & \text{[real or soft photon]} \\ & Q_9 = \frac{e^2}{g^2} \bar{s} \gamma_\mu (1 - \gamma_5) b \, \bar{\ell} \gamma_\mu \ell & \text{[} b \to s \mu \mu \text{ via } Z/\text{hard } \gamma \text{]} \\ & Q_{10} = \frac{e^2}{g^2} \bar{s} \gamma_\mu (1 - \gamma_5) b \, \bar{\ell} \gamma_\mu \gamma_5 \ell & \text{[} b \to s \mu \mu \text{ via } Z \text{]} \end{aligned}$$

b  

$$t$$
  
 $\gamma, z^{0}$   
 $\mu^{+}$   
 $\mu^{+}$   

Right-handed currents: 1- 
$$\gamma_5 \rightarrow 1 + \gamma_5$$

#### **Decay topology**



## $B^0 \rightarrow K^* \mu^+ \mu^-$ - angular analysis

 $B^0 \to K^* \mu^+ \mu^-$  full decay rate is given as differential decay distribution

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1 - F_L)\sin^2\theta_K + F_L\cos^2\theta_K + \frac{1}{4}(1 - F_L)\sin^2\theta_K\cos2\theta_\ell \\ & -F_L\cos^2\theta_K\cos2\theta_\ell + \\ S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi + S_4\sin2\theta_K\sin2\theta_\ell\cos\phi + \\ S_5\sin2\theta_K\sin\theta_\ell\cos\phi + S_6^s\sin^2\theta_K\cos\theta_\ell + \\ S_7\sin2\theta_K\sin\theta_\ell\sin\phi + \\ S_8\sin2\theta_K\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin2\phi \end{bmatrix}$$

- Experiments typically measure sub-set of these observables by integrating out some parts
- Classical observable measured for the FIRST time by LHCb
- Results from B-factories and CDF very much limited by the statistical uncertainty

# $B^0 \to K^* \mu^+ \mu^-$ - angular analysis

Folding technique ( $\phi \rightarrow \phi + \pi$ ) for  $\phi < 0$ , reduces the nr of parameters to fit to four



Simpler expression remains, sensitive to:  $F_L$ ,  $A_{FB}$ ,  $S_3$ ,  $A_9 \rightarrow$  lost sensitivity to terms 4, 5,7 and 8

# $B^0 \rightarrow K^* \mu^+ \mu^-$ - Forward-Backward asymmetry

Hadronic uncertainties under reasonable control for:

→  $F_L$ : Fraction of K<sup>\*</sup> longitudinal polarization →  $A_{FB}$ : Forward-Backward asymmetry of lepton →  $S_3 \sim A_T^2$  (1- $F_L$ ): Asymmetry in K<sup>\*</sup> transverse polarization

# A<sub>FB</sub> zero crossing point particularly well predicted within the SM

$$A_{FB} \propto -Re[(2C_7^{eff} + \frac{q^2}{m_b^2}C_9^{eff})C_{10}]$$

The SM forward-backward asymmetry in  $b \rightarrow s l^+l^-$  arises from **interference** between **y** and **Z**<sup>0</sup> contributions







# $B^0 \to K^* \mu^+ \mu^-$ - angular analysis results

Generally very good agreement with SM in the observables  $F_{L}$ ,  $A_{FB}$ ,  $S_3$ ,  $A_9$ 



LHCb 2012: First measurement of  $A_{FB}$  zero-crossing point:  $q_0=4.9\pm0.9$  GeV<sup>2</sup>/c<sup>4</sup>

# $B^0 \to K^* \mu^+ \mu^-$ - angular analysis results

- Earlier we lost sensitivity to 4 terms to simplify the fit
- Now: extract the observables relater to those terms!

Other folding techniques, applying different transforms, can give access to the rest of observables:



# $B^0 \rightarrow K^* \mu^+ \mu^-$ - angular analysis results

- LHCb performed first full angular analysis in 2016
  - $\rightarrow$  extracted full set of CP-averaged angular terms and correlations
  - $\rightarrow$  determined full set of CP-asymmetries



Differences with predictions based on the Standard Model at the level of 3.4 standard deviations

### Lepton flavour universality tests

- In SM couplings of the gauge bosons to leptons are independent of lepton flavour
- Ratios of the form:  $R_K = \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B^+ \to K^+ e^+ e^-)} \stackrel{\text{SM}}{\cong} 1$
- Free from QCD uncertainties that affect other observables
  - $\rightarrow$  hadronic effects cancel, error is O(10<sup>-4</sup>)
  - $\rightarrow$  QED corrections can be O(10<sup>-2</sup>)



#### Interpretation of the anomaly

- Most of measurements in good agreement with SM predictions  $\rightarrow$  only a hint of disagreement in P<sub>5</sub>' at low q<sup>2</sup>
- But, anyway: interesting local discrepancy in P<sub>5</sub>'

 $\rightarrow$  few others tensions less significant in other observables

- Possibly due to:
  - $\rightarrow$  statistical fluctuation
  - → SM theoretical prediction not fully correct (QCD effects not fully understood...)
- New Physics:
- $\rightarrow$  different value for some Wilson coefficients, e.g. C<sub>9</sub>, or C<sub>9</sub> and C<sub>9</sub>', including the possibility of Z' particle with a mass around few TeV

# $\Delta F=1:$ Higgs penguins

# $B_s \to \mu^+ \mu^-$

- Decay well predicted theoretically, and experimentally is exceptionally clean
- Within the SM, the time-integrated predicted value is very small:

 $BR(B_s \rightarrow \mu^+ \mu^-)^{SM} = (3.3 \pm 0.3) \times 10^{-9}$ 

• Huge NP enhancement ( $\tan\beta$  = ratio of Higgs vevs)

$$BR(B_s \to \mu^+ \mu^-)^{MSSM} \propto \tan^6 \beta / M_{A0}^4$$

- Very sensitive to an extended scalar sector (e.g. extended Higgs, SUSY, etc.)
- Clean experimental signature



#### **Killer for new physics discovery!**

# ${B^0}_{(s)} \to \mu^+ \mu^-$

• It was considered one of the hottest channels for early NP discovery at LHC  $(B_d \rightarrow \mu^+ \mu^- \text{ also interesting...})$ 



#### Searches over 30 years

## $B^0{}_{(s)} \rightarrow \mu^+\mu^-$ : analysis ingredients

- Produce a very large sample of B mesons
- Trigger efficiently on dimuon signatures
- Reject background
  - $\rightarrow$  excellent vertex resolution (identify displaced vertex)
  - $\rightarrow$  excellent mass resolution (identify B peak)
    - also essential to resolve  $\mathsf{B}^0$  from  $\mathsf{B}_{\mathsf{s}}^0$  decays
  - → powerful muon identification (reject background from B decays with misidentified pions)
  - → typical to combine various discriminating variables into a multivariate classifier
    - e.g. Boosted Decision Trees algorithm



# $B_s \to \mu^+ \mu^-$ : latest results from CMS & LHCb

Nov 2012: LHCb found the first evidence for  $B_s \to \mu^+\mu^-$  using 2.1 fb^-1



- Update: full dataset: 3 fb<sup>-1</sup>
   improved BDT
  - expected sensitivity:  $5.0\sigma$



- Update to 25 fb<sup>-1</sup>
  - cut based  $\rightarrow$  BDT based
  - improved variables
  - expected sensitivity: 4.8σ





### $B_s \rightarrow \mu^+\mu^-$ : combined LHCb + CMS result

$$B(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = (2.9 \pm 0.7) \times 10^{-9}$$



## Implications of $B_s \to \mu^+ \mu^-$

The measured BR is compatible with the SM prediction



Important key measurements:

- ratio of decay rates of  $B^0 \to \mu^+\mu^-$  /  $B_s \to \mu^+\mu^-$ 

 $\rightarrow$  allows e.g. to test of "Minimal Flavour Violation" hypothesis

- $\bullet$  lifetime of  $B_s \to \mu^+ \mu^-$ 
  - $\rightarrow$  new, theoretically clean observable that is largely unconstrained