Neutrino interactions and neutrino oscillations in the T2K experiment

Tomasz Wąchała Department of Cosmic Rays and Neutrinos

Seminarium IFJ PAN, Kraków, 02.06.2022

Outline

- 1. Neutrinos and their oscillations
- 2. T2K experiment
- 3. Why neutrino oscillations need neutrino cross sections?
- 4. Selected measurements of neutrino cross sections
- 5. Summary

Neutrinos in Standard Model

- Neutrinos in the Standard Model are elementary particles with the following properties:
 - → Fermions, interacting only via weak interactions
 - → Neutral (no electric charge)
 - → Massless
 - ➤ Come in three flavor states: electron neutrino: v_e, muon neutrino: v_µ, taon neutrino: v_τ). LEP experiment results are consistent with the three neutrino flavors (Z⁰ boson width measurement).

Standard Model of Elementary Particles

Wikimedia Commons

Neutrino oscillations

- Neutrino oscillations phenomenon→ experimentally confirmed for neutrinos by a number of experiments: Super Kamiokande (1998), K2K, SNO, KamLAND, MINOS, Daya Bay, T2K,...
- Neutrinos are produced and detected via weak interactions but propagate as the linear superpositions of the mass eigenstates.
- Discovery of neutrino oscillations \rightarrow neutrinos have mass!

Neutrino oscillations (PMNS model)

• Transition (probability) between two neutrino flavors depends not only on U_{PMNS} , but also on Δm_{ij}^2 , =m_i²-m_j², energy and distance via $\sin^2(\frac{\Delta m_{ij}^2 L}{4 E})$ term \rightarrow oscillations

Knowns and unknowns in neutrino oscillations

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

NO	Best Fit Ordering	
Param	bfp $\pm 1\sigma$	3σ range
$\frac{\sin^2 \theta_{12}}{10-1}$	$3.20^{+0.20}_{-0.16}$	$2.73 \rightarrow 3.79$
$\theta_{12}/^{\circ}$	$34.5^{+1.2}_{-1.0}$	$31.5 \rightarrow 38.0$
$\frac{\sin^2 \theta_{23}}{10^{-1}}$	$5.47^{+0.20}_{-0.30}$	$4.45 \rightarrow 5.99$
$\theta_{23}/^{\circ}$	$47.7^{\pm1.2}_{\pm1.7}$	$41.8 \rightarrow 50.7$
$\frac{\sin^2 \theta_{13}}{10^{-2}}$	$2.160^{+0.083}_{-0.069}$	$1.96 \rightarrow 2.41$
$\theta_{13}/^{\circ}$	$8.45^{+0.16}_{-0.14}$	8.0 ightarrow 8.9
$\delta_{CP}/^{\circ}$	218^{+38}_{-27}	$157 \to 349$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ gV}^2}$	$7.55\substack{+0.20 \\ -0.16}$	$7.05 \rightarrow 8.24$
$\frac{\Delta m^2_{32}}{10^{-3} \text{ eV}^2}$	2.424 ± 0.03	$2.334 \rightarrow 2.524$

Sem. IFJ PAN, 02.06.2022

IO	$\Delta \chi^2$	$\Delta \chi^2 = 11.7$	
$\frac{\sin^2 \theta_{12}}{10}$	$3.20^{+0.20}_{-0.16}$	$2.73 \rightarrow 3.79$	
$\theta_{12}/^{\circ}$	$34.5^{+1.2}_{-1.0}$	$31.5 \rightarrow 38.0$	
$\frac{\sin^2 \theta_{23}}{10-1}$	$5.51^{+0.18}_{-0.30}$	$4.53 \rightarrow 5.98$	
$\theta_{23}/^{\circ}$	$47.9^{+1.0}_{-1.7}$	$42.3 \rightarrow 50.7$	
$\frac{\sin^2 \theta_{13}}{10^{-2}}$	$2.220^{+0.074}_{-0.076}$	$1.99 \rightarrow 2.44$	
$\theta_{13}/^{\circ}$	$8.53^{+0.14}_{-0.15}$	$8.1 \rightarrow 9.0$	
$\delta_{CP}/^{\circ}$	281^{+23}_{-27}	$202 \to 349$	
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.55\substack{+0.20 \\ -0.16}$	$7.05 \rightarrow 8.24$	
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2}$	$-2.50\pm^{+0.04}_{-0.03}$	$-2.59 \rightarrow -2.39$	

T.Wachata, Neutrino interactions...

• Open questions:

- Is $\delta_{CP} \neq 0,+-\pi$ (CP symmetry violation in neutrino sector) ?

- Is there a normal: m₃>m₂>m₁ (N.O. or N.H.) or inverted: m₂>m₁>m₃ (I.O. or I.H.) mass ordering?
- Is $\theta_{23} = 45^{\circ}$ (called 'maximal mixing'), if not then what is θ_{23} octant?

T2K experiment overview

- High intensity beam produced at Japan Proton Accelerator Research Complex
 (J-PARC) working in two modes: producing neutrinos (v_u) and antineutrinos (anti-v_u)
- Super-Kamiokande as a far detector to measure neutrino oscillations at 295 km
- Beam with narrow energy spectrum peaked at 0.6 GeV but extending to several GeV (so called sub-GeV region)
- Main goals:
 - Measure neutrino oscillations: originally designed to discover v_e appearance, currently: exclude CP conservation at 3σ if δ_{CP} is maximal

Producing neutrinos in T2K

Sem. IFJ PAN, 02.06.2022

T2K off-axis near detector

- ND280 off-axis near detector:
 - Consists of several sub-detectors in 0.2T magnetic field:
 - Tracker (TPCs & Fine-Grain Detectors), Pizero Detector (POD), Electromagnetic Calorimeter (ECAL), Side Muon Range Detector (SMRD)
 - <u>Goals: Measure neutrino spectrum</u> <u>before the oscillation occurs</u>
 - Measure neutrino-nucleus cross sections

Muon anti-neutrino interaction in the FGD1 part of ND280 with positive muon and negative pion detected

CP symmetry violation in neutrino oscillations?

40

- We know that there is a Charge-Parity (CP) symmetry
- violation in the quark sector
- CP symmetry violation in neutrino oscillations would occur if:

 $P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) \neq P(\overline{\mathbf{v}}_{\mu} \rightarrow \overline{\mathbf{v}}_{e})$

In T2K we measure:

CP phase measurement in T2K

- First measurement of the CP phase was done in T2K
- T2K also provided the best estimate of δ_{CP} so far.
- Large region of CP phase values excluded by T2K at 3σ C.L.
- CP conservation

 (δ_{CP}=0,±π) excluded at
 90% C.L. → preference
 for maximal CP violation

Sem. IFJ PAN, 02.06.2022

Why neutrino oscillations need neutrino cross sections?

• Total number of detected neutrino interactions of channel *a* in T2K:

$$N_{a \ detected} = \sigma_{a} \cdot \Phi \cdot T \cdot \epsilon \cdot P_{oscillation}$$

where: σ_A - neutrino interaction cross section, Φ - neutrino flux, T – number of targets, ϵ – detection efficiency, $P_{oscillation}$ – oscillation probability

- The measurements of neutrino cross sections σ_a are crucial to reduce systematic uncertainties in neutrino oscillations
- Cross-section has currently assigned the largest systematic uncertainty (up to 3.82% for T2K) in neutrino oscillation analysis
 - Precise $\delta_{\mbox{\tiny CP}}$ measurement requires further reduction of this uncertainty
- Neutrino cross section measurements are also important to verify the existing neutrino interaction models

Neutrino interactions - reaction?

Topology, not reaction!

- All currently running accelerator neutrino experiments use nuclear targets (water, carbon, liquid argon) to increase the number of detected interactions
- 'Reaction' classification is no longer valid. 'Topology' is currently used in the neutrino interaction classification:
 - Particles can re-interact inside the nucleus and the final state can be different than the state after neutrino-nucleon interaction
 - 'Topology' classification takes into account particles in the final state which we see in the detector

T.Wachala, Neutrino interactions...

Nuclear initial state

- Primary interactions (neutrino-nucleon) are not on free nucleon:
 - Fermi motion of the nucleons inside the nucleus needs to be taken into account
 - The energy loss in the nucleus (to extract struck nucleon from its shell) - called 'nuclear removal energy' needs to be considered
- Various models of nucleon momentum distribution before the interaction:
 - Relativistic Fermi Gas (RFG) gas of non-interacting fermions in a constant nuclear potential (distance independent). A characteristic sharp cutoff ('Fermi cliff' is visible in the nucleon momentum distribution)
 - Local Fermi Gas (LFG) nuclear potential depends on the local nuclear density
 - Spectral Function (SF) the most realistic momentum distributions of nucleons, taking into account nucleon-nucleon interactions within the nucleus by O. Benhar et al. (*Nucl. Phys. A579 (1994) 493*)

Sem. IFJ PAN, 02.06.2022

Correlations inside the nucleus

- Started to be considered after suprisingly high values of the axial mass parameter measured by MiniBooNE experiment (*Phys. Rev. D81 092005*)
- Incoming neutrino can interact not only with one nucleon (impulse approximation) but also with n nucleons simultaneously → called n particle - n hole interactions (npnh or np-nh)
- Martini and Nieves models (*Phys. Rev. C83 045501, Phys. Rev. C80 065501*) use multi-body expansion to explore multi-nucleon correlations and npnh interactions
- First term in their expansion refers to 1p1h and describes CCQE process
- Long range correlations are taken into account by Random Phase Approximation (RPA) approach → nuclear screening effect considered as a correction to RFG model

Final State Interactions

- Hadrons produced in the primary interaction of neutrino with the nucleon can re-interact in the nucleus → Final State Interactions (FSI)
- Common usage of intra-nuclear cascade model for FSI → classical billiard ball scattering in the nucleus
- In sub-GeV region pions are most often produced in the primary interactions and they can be absorbed, scattered or change their charge in FSI
- CC1π interactions can mimic CC0π and alter neutrino energy reconstruction

Neutrino energy reconstruction

- In neutrino oscillation experiments we need to measure energy spectrum of neutrinos
- But we don't know the energy of neutrinos directly!
- Energy is reconstructed from the final state using the CCQE interaction assumption
- Nuclear targets increase the number of detected neutrino interactions but also introduce complications related to nuclear effects:
 - Fermi motion of the nucleons (smearing),
 - Nucleon removal energy (bias),
 - FSI and 2p2h interactions (further bias)

Sem. IFJ PAN, 02.06.2022

T.Wachala, Neutrino interac

Experimental results: T2K vs MINERvA

Elevation View μ Side HCAL Side ECA MINOS Near Detector (Muon Spectrometer) Target Regior b, Fe, H₂O) v-Beam Electromagnetic Calorimeter Hadronio Calorimete Active Tracker 8 Nuclear Tai (C, Pb, I Region 8.3 tons total Liquid Helium 30 tons

Side ECAL

Side HCAL 116 tons

5 m

0.6 tons

MINERVA

Primary targets: CH, H₂O

Primary targets: CH, Pb, Fe

←2m→

$CC0\pi$ measurements

- It is the neutrino interaction channel which we know the best \rightarrow focus in the community for the last 10 years
- Crucial for T2K experiment and its continuation Hyper-Kamiokande dominant cross section at sub-GeV region → used as a signal for neutrino oscillations
- The simplest observables in which we can provide a cross section are the muon opening angle (or cosine of the angle) and muon momentum → aka 'muon kinematics'

$CC0\pi$ measurements

$CC0\pi$ measurements

 ...but poor agreement in the 'very forward region' (small muon opening angles)

$CC0\pi$ - nuclear effects

An idea (*Phys. Rev. C 94, 015503 (2016)*) to look for nuclear effects in CC0π interactions via Single Transverse Variables (STV)

T.Wachala, Neutrino interactions...

$\text{CC0}\pi$ - nuclear effects

 An idea (*Phys. Rev. C 94, 015503 (2016)*) to look for nuclear effects by looking at proton(s) kinematics in CC0π interactions via Single Transverse Variables (STV)

$CC0\pi$ - nuclear effects

$CC0\pi$ - nuclear effects

$CC1\pi$ measurements

- Important contribution to total cross section in sub-GeV region and background in neutrino oscillations
- Can look into cross section in terms of muon opening angle, momentum and pion opening angle, momentum

$CC1\pi$ measurements

 Total cross sections and cross sections in terms of muon kinematics agree with Monte Carlo predictions

$CC1\pi$ measurements

 But we are not able to reproduce the cross section as a function of pion kinematics at all...

T.Wachala, Neutrino interactions...

×10⁻⁴² Phys. Rev. D 100, 072005

CC1\pi^+ (25.4/14

DATA (χ²/Nbin) MC Shape

 $d\sigma/d\theta_{\pi}$ (cm²/degrees)

Future measurements in T2K

PODECal

- More measurements from the current and upgraded T2K setup are coming:
 - Cross sections on different nuclear targets (eg. lead) wiil provide more hints on nuclear effects.
 - New event reconstruction techniques will increase the number of detected neutrino interactions and reduce systematic errors.
 - Joint fits to off-axis and on-axis detectors
 - Upgraded ND280 detector will greatly help in this effort → improved angular acceptance, tracking threshold and 3d reconstruction

Summary of experimental results

- We describe muon kinematics in CC0 π measurements quite well with most models:
 - Impulse approximation is reasonable
 - Inclusive 2p2h models are reasonable
 - The details of the hadron kinematics don't matter so much
 - The impact of FSI is small
- Forward going muon kinematics description is poor in CC0 π measurements:
 - Impulse approximation is not reliable, but most of our models use it
 - Models with RPA do better because they provide some modelling of physics beyond the impulse approximation
- We describe nucleon kinematics badly
 - All of our models rely on ad-hoc model combinations to predict nucleon kinematics
 - SF models do better here because they use less approximations in predictions of nucleon kinematics
- Pion kinematics description is poor:
 - Generators using old models such as Reign-Seghal (Ann. Phys. 133 (1981) 79)
 - New model (MK model, Phys. Rev. D 102, 053009) is currently being developed in T2K. Uses ie. new vector-current form factors and fits to the latest electron-proton scattering data.

Progress in understanding neutrino interactions

- 2001: Nuclear effects are not taken into account in neutrino interactions at all...
- <u>2010</u>: ",Most of our knowledge in neutrino cross sections in 0.1 20 GeV range comes from the early experiments conducted in 1970s and 1980s" (Rev. Mod. Phys. 84.1307)
- <u>2010-2013</u>: Axial mass = 1.3 GeV (MiniBooNE)? 2p2h interactions are started to being considered...
- <u>2016-2018</u>: Precision measurements of hadron kinematics in the CCQE/CC0pi interactions are crucial to understand nuclear effects!
- <u>2021-2022</u>: Many new measurements probing various interaction channels, energy regimes and nuclear targets.
- Progress in the neutrino cross section measurements is clearly more rapid than in the models of neutrino event generators
- We need to better understand neutrino interactions for future experiments such as DUNE and Hyper-K, but we do not need to have this tomorrow (DUNE, HK start ~2028)
- But, the measurements and theory developments have to start now!

Summary

- Understanding even subtle details of neutrino interactions is crucial for precision measurements in neutrino oscillations
- Using nuclear targets introduced additional complications, eg. in neutrino energy reconstruction
- Currently none of the models is able to fully describe two main channels of neutrino interaction in the sub-GeV region
- Large effort towards improving the modelling of neutrino interactions:
 - New models, tuning neutrino event generators, using electron scattering data,...
 - Experimental campaign to measure neutrino-nucleus cross sections more precisely:
 - T2K, MINERvA, NOvA,
 - Future experiments: T2K-II, MicroBooNE, ICARUS, SBND

Credits: Presentations by S. Dolan at INSS, EPS-HEP

Sem. IFJ PAN, 02.06.2022

Thank you