

Jet-evolution in a medium via coherent emissions and scatterings

<u>M. Rohrmoser</u>^a, K. Kutak^a, W. Płaczek^b, E. Blanco^a, K. Tywoniuk^c

^a IFJ-PAN, Kraków ^b Uniwersytet Jagielloński, Kraków ^cUniversity in Bergen, Bergen

based on:

[Blanco, Kutak, Płaczek, MR, Tywoniuk,arxiv: 2109.05918], [MR, arxiv: 2111.00323] (quark+gluon jets; Monte-Carlo) [Blanco, Kutak, Płaczek, MR, Straka, JHEP 04(2021)014] (k_T broadening in gluon jets) [Kutak,Płaczek, Straka: Eur.Phys.J. C79 (2019) no.4, 317] (Monte Carlo for gluon fragmentation functions)

QGP tomography via hard probes

Color degrees of freedom (quarks and gluons): Confined within proton and neutrons

...collision experiments for heavy ions e.g. at the LHC at CERN or at RHIC at BNL

QGP tomography via hard probes

...liquid state, Quark Gluon Plasma (QGP)

...tested via hard probes:

highly energetic, strongly interacting particles

QGP tomography via hard probes

Processes in jets in the medium

This talk: combination of scattering and induced radiation processes!

Coherent emission

...à la BDMPS-Z [Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov]

 $t_{br} \sim \sqrt{\frac{2\omega}{\hat{q}}}$ $t_{br} \sim t_{mfp}: \text{ one scattering + radiation}$ $\dots \text{Bethe-Heitler spectrum}$ $t_{br} \gg t_{mfp}: \text{ coherent radiation}$ $\omega \frac{dI}{d\omega} \sim \alpha_s \frac{L}{t_{br}} = \alpha_s \sqrt{\frac{\omega_c}{\omega}}$

Look at range: $\omega_{BH} < \omega < \omega_c$

 $oldsymbol{^{\diamond}}$ need effective kernel: $\mathcal{K}(z,k_T)$

cf. [Blaizot, Dominguez, Iancu, Mehtar-Tani: JHEP 1301 (2013) 143] [Blanco, Kutak, Płaczek, MR, Tywoniuk,arxiv: 2109.05918]

000000

000000

000000)

000000

0000

2000000

Splitting Kernels for Quarks and Gluons

[Blanco, Kutak, Płaczek, MR, Tywoniuk, arxiv: 2109.05918], [Blaizot, Dominguez, Iancu, Mehtar-Tani: JHEP 1301 (2013) 143]

$$\mathcal{K}_{ij}(Q,z,p_{0}^{+}) = \frac{2P_{ij}(z)}{z(1-z)p_{0}^{+}} \sin\left(\frac{Q^{2}}{2k_{\mathrm{br}}^{2}}\right) \exp\left(-\frac{Q^{2}}{2k_{\mathrm{br}}^{2}}\right)$$

$$k_{\mathrm{br}}^{2} = \sqrt{z(1-z)p_{0}^{+}f_{ij}(z)\frac{\hat{q}}{N_{c}}}$$

$$f_{gg}(z) = (1-z)C_{A} + z^{2}C_{A}$$

$$f_{gg}(z) = C_{F} - z(1-z)C_{A},$$

$$f_{gq}(z) = (1-z)C_{A} + z^{2}C_{F}$$

$$f_{gq}(z) = zC_{A} + (1-z)^{2}C_{F}$$

$$\int_{0}^{2}\mathcal{P}_{\mathrm{split}} = \frac{\alpha_{s}}{(2\pi)^{2}}\mathcal{K}(Q, z, \frac{x}{z}p_{0}^{+})$$

$$\int_{0}^{3}\mathcal{P}_{\mathrm{split}} = \frac{2\pi}{\sqrt{xt^{*}}}\sqrt{z}\mathcal{K}(z)$$

$$\frac{p_{0}^{+}}{\omega} = xp_{0}^{+}$$

$$\int_{0}^{2}\mathcal{P}_{\mathrm{split}} = 2\pi\frac{1}{\sqrt{xt^{*}}}\int dz\sqrt{z}\mathcal{K}(z)$$

$$\frac{1}{t^{*}} = \frac{\alpha_{s}}{\pi}\sqrt{\frac{\hat{q}}{p_{0}^{+}}}$$
Generalization of BDMPS-Z approach

Scattering Kernels

Used right now:

 $w_g(\mathbf{q}) = rac{16\pi^2 lpha_s^2 N_c n_{
m med}}{\mathbf{q}^4}$

$$w_g(\mathbf{q}) = rac{g^2 m_D^2 T}{\mathbf{q}^2 (\mathbf{q}^2 + m_D^2)}, \qquad g^2 = 4\pi lpha_s$$

 n_{med} ...density of scatterers m_D ...Debye mass T...medium temperature

$$w_q(\mathbf{q}) = \frac{C_F}{C_A} w_g(\mathbf{q})$$

Sudakov factors

Probabilities of interaction:

$$\begin{split} \Phi_g(x) = &\alpha_s \int_{\epsilon}^{1-\epsilon} dz \int_{q>0} \frac{d^2 \mathbf{q}}{(2\pi)^2} \bigg[\mathcal{K}_{gg}(\mathbf{q}, z, xp_+) + \mathcal{K}_{qg}(\mathbf{q}, z, xp_+) \bigg] + \int_{q>q_{\min}} \frac{d^2 \mathbf{q}}{(2\pi)^2} w_g(\mathbf{q}) \,, \\ \Phi_q(x) = &\alpha_s \int_{\epsilon}^{1-\epsilon} dz \int_{q>0} \frac{d^2 \mathbf{q}}{(2\pi)^2} \mathcal{K}_{qq}(\mathbf{q}, z, xp_+) + \int_{q>q_{\min}} \frac{d^2 \mathbf{q}}{(2\pi)^2} w_q(\mathbf{q}) \,, \end{split}$$

Probability of no interaction for particle A over time (t_2-t_1) :

$$\Delta_A(x,t_2-t_1)=\exp\left(-\Phi_A(x)(t_2-t_1)
ight)$$
 ... Sudakov factor

Monte-Carlo algorithms for jets

Other codes implementing BDMPS-Z spectra:

MARTINI, JEWEL, QPYTHIA, ...

Analogous for the k_T dependent equation in x, k_T , and, τ and system of equations!

TMDICE code: [MR, arxiv: 2111.00323]

- Written in C++
- Source code available at https://github.com/Rohrmoser/TMDICE

Link to Evolution equations

[Kutak,Płaczek, Straka: Eur.Phys.J. C79 (2019) no.4, 317]

Collinear evolution: $\mathcal{K}(z)$, $w(\mathbf{q}) = 0$

$$D(x,\tau) = x \frac{dN}{dx}$$

$$D(x,\tau) = e^{-\phi(x)(\tau-\tau_0)}D(x,\tau_0) + \int_{\tau_0}^{\tau} d\tau' \int_{\epsilon}^{1-\epsilon} dz \int_{0}^{1} dy \delta(x-zy) \sqrt{\frac{z}{x}} z \mathcal{K}(z) e^{-\phi(x)(\tau-\tau')}D(y,\tau')$$
Monte-Carlo algorithm that solves these evolution equations:

$$\frac{\partial}{\partial t} D(x,t) = \frac{1}{t^*} \int_{0}^{1} dz \mathcal{K}(z) \left[\sqrt{\frac{z}{x}} D\left(\frac{x}{z},t\right) - \frac{z}{\sqrt{x}} D(x,t) \right]$$

$$\tau = \frac{t}{t^*}$$
Exist direct methods: Chebyshev method, Runge Kutta... [Blanco, Kutak, Placzek, MB, Straka, JHEP 04(2021)014]

System of Equations for quarks and gluons

[Blanco, Kutak, Płaczek, MR, Tywoniuk, arxiv: 2109.05918]

$$\begin{split} \frac{\partial}{\partial t} D_g(x, \boldsymbol{k}, t) &= \int_0^1 \mathrm{d}z \, \int \frac{\mathrm{d}^2 \boldsymbol{q}}{(2\pi)^2} \alpha_s \bigg\{ 2 \mathcal{K}_{gg} \left(\boldsymbol{Q}, z, \frac{x}{z} p_0^+ \right) D_g \left(\frac{x}{z}, \boldsymbol{q}, t \right) + \mathcal{K}_{gq} \left(\boldsymbol{Q}, z, \frac{x}{z} p_0^+ \right) \sum_i D_{q_i} \left(\frac{x}{z}, \boldsymbol{q}, t \right) \\ &- \left[\mathcal{K}_{gg}(\boldsymbol{q}, z, x p_0^+) + \mathcal{K}_{qg}(\boldsymbol{q}, z, x p_0^+) \right] D_g(x, \boldsymbol{k}, t) \bigg\} + \int \frac{\mathrm{d}^2 \boldsymbol{l}}{(2\pi)^2} \, C_g(\boldsymbol{l}) \, D_g(x, \boldsymbol{k} - \boldsymbol{l}, t), \\ \frac{\partial}{\partial t} D_{q_i}(x, \boldsymbol{k}, t) &= \int_0^1 \mathrm{d}z \, \int \frac{\mathrm{d}^2 \boldsymbol{q}}{(2\pi)^2} \alpha_s \bigg\{ \mathcal{K}_{qq} \left(\boldsymbol{Q}, z, \frac{x}{z} p_0^+ \right) D_{q_i} \left(\frac{x}{z}, \boldsymbol{q}, t \right) + \frac{1}{N_F} \mathcal{K}_{qg} \left(\boldsymbol{Q}, z, \frac{x}{z} p_0^+ \right) D_g \left(\frac{x}{z}, \boldsymbol{q}, t \right) \\ &- \mathcal{K}_{qq}(\boldsymbol{q}, z, x p_0^+) \, D_{q_i}(x, \boldsymbol{k}, t) \bigg\} + \int \frac{\mathrm{d}^2 \boldsymbol{l}}{(2\pi)^2} \, C_q(\boldsymbol{l}) \, D_{q_i}(x, \boldsymbol{k} - \boldsymbol{l}, t), \end{split}$$

$$C_{q(g)}(\boldsymbol{l}) = w_{q(g)}(\boldsymbol{l}) - \delta(\boldsymbol{l}) \int d^2 \boldsymbol{l}' w_{q(g)}(\boldsymbol{l}')$$

Fragmentation functions (1/4) $\mathcal{K}_{ij}(\mathbf{Q}, z, xp_0^+) = \frac{16\pi^2 \alpha_s^2 N_c n}{q^2 (q^2 + m_D^2)}$

Fragmentation functions (2/4) $\mathcal{K}_{ij}(\mathbf{Q}, z, xp_0^+) = \frac{16\pi^2 \alpha_s^2 N_c n}{q^2 (q^2 + m_D^2)}$

Fragmentation functions (3/4)

 $\mathcal{K}_{ij}(\mathbf{Q}, z, xp_0^+) \qquad w_g(\mathbf{q}) = \frac{16\pi^2 \alpha_s^2 N_c n}{\mathbf{q}^2 (\mathbf{q}^2 + m_D^2)}$

Fragmentation functions (4/4)

 $\mathcal{K}_{ij}(\mathbf{Q}, z, xp_0^+) \qquad w_g(\mathbf{q}) = \frac{16\pi^2 \alpha_s^2 N_c n}{\mathbf{q}^2 (\mathbf{q}^2 + m_D^2)}$

17

Different models

Broadening in branching:

 $\mathcal{K}_{ij}(\mathbf{Q}, z, xp_0^+)$

- No scattering
- Scattering: $w_g(\mathbf{q}) = \frac{16\pi^2 \alpha_s^2 N_c n}{\mathbf{q}^4}$
- Scattering: $w_g(\boldsymbol{q}) = \frac{16\pi^2 \alpha_s^2 N_c n}{\boldsymbol{q}^2 (\boldsymbol{q}^2 + m_D^2)}$
- No broadening in branching: $\mathcal{K}_{ij}(z)$
 - Scattering: $w_g(\mathbf{q}) = \frac{16\pi^2 \alpha_s^2 N_c n}{\mathbf{q}^4}$

• Scattering:
$$w_g(\boldsymbol{q}) = \frac{16\pi^2 \alpha_s^2 N_c n}{\boldsymbol{q}^2 (\boldsymbol{q}^2 + m_D^2)}$$

Gaussian broadening:

x given by collinear evolution without scattering via $\mathcal{K}_{ij}(z)$

 $m{k}$ given by Gaussian distribution with variance $\,\sigma^2 \sim \hat{q}L$

All models yield the same k_T averaged splitting kernel $\mathcal{K}_{ij}(z)$

Constant medium parameters: L, \hat{q} , n, m_D

Departure from Gaussian broadening

k_{T} Broadening (1/3)

 $\tilde{D}(x,k_T,t) = 2\pi k_T D(x,k_T,t)$

k_{T} Broadening (1/3)

 $\tilde{D}(x,k_T,t) = 2\pi k_T D(x,k_T,t)$

k_T Broadening (2/3)

 k_{T} Broadening (3/3)

In cone energy $E_{\text{in-cone}}(\Theta) = \int_0^1 dx \int_0^{2\pi} d\varphi \int_0^{xE\sin\Theta} dk_T k_T D(x, \mathbf{k}, t)$

[Blanco, Kutak, Płaczek, MR, Tywoniuk, arxiv: 2109.05918]

In cone energy $E_{\rm in-cone}(\Theta) = \int_0^1 dx \int_0^{2\pi} d\varphi \int_0^{xE\sin\Theta} dk_T k_T D(x, \mathbf{k}, t)$

Initial quark, $\Theta = 1.0$

Summary & Outlook

- Monte-Carlo algorithms TMDICE and MINCAS based on coherent emission and scattering for quarks and gluons
- Transverse momentum broadening differs from Gaussian distribution
- Gaussian distribution: smallest k_T broadening
- Clear ordering of broadening effects
- Quark jets keep more energy inside a jet cone.
- Covers regime of coherent emissions: requires underlying events (hard cross section) and cascade evolution outside of medium (vacuum like emissions)

Thank you for your attention!

Back-up slides

Evolution of $D(x,k_{T},t)$ (1/2)

 $\mathcal{K}(z) \quad w(\boldsymbol{q}) = \frac{16\pi^2 \alpha_s^2 N_c n}{\boldsymbol{q}^2 (\boldsymbol{q}^2 + m_D^2)}$

[Kutak, Płaczek, Straka: Eur. Phys. J. C79 (2019) no.4, 317]

Evolution in x

29

Evolution of $D(x,k_{T},t)$ (2/2)

 $\mathcal{K}(z) \quad w(\boldsymbol{q}) = \frac{16\pi^2 \alpha_s^2 N_c n}{\boldsymbol{q}^2 (\boldsymbol{q}^2 + m_D^2)}$

[Kutak, Płaczek, Straka: Eur. Phys. J. C79 (2019) no.4, 317]

Probabilities for interactions

Effective Splitting Kernels

 $\mathcal{K}_{ij}(\mathbf{Q}, z, p_0^+) \sim P_{ij}(z) \times \mathcal{I}_{ij}$

Assumptions: Transverse momentum transfer only, harmonic oscillator approximation, static medium, static scattering centers.

$$\mathcal{I}_{ij}(u_2, t_2; u_1, t_1) = \int_{u(t_1)=u_1}^{u(t_2)=u_2} \mathcal{D}u \, e^{i\frac{\omega_0}{2} \int_{t_1}^{t_2} ds \, \dot{u}^2(s) - \int_{t_1}^{t_2} ds \, n(s)\sigma_{\text{eff}}(u(s), v)} \qquad v = zr_i + (1-z)r_k - r_j$$

$$\sigma_{\rm eff}(u, v) = \frac{C_i + C_k - C_j}{2} \,\sigma(u) + \frac{C_i + C_j - C_k}{2} \,\sigma(v + (1 - z)u) + \frac{C_k + C_j - C_i}{2} \,\sigma(v - zu)$$

Turbulent behavior

[Kutak, Płaczek, Straka: Eur. Phys. J. C79 (2019) no.4, 317]

Evolution in $k_{\rm T}$

[Blanco, Kutak, Płaczek, MR, Tywoniuk, arxiv: 2109.05918]

Turbulent behavior (2/2)

[Kutak, Płaczek, Straka: Eur. Phys. J. C79 (2019) no.4, 317]

Diffusion approximation (1/2)

Diffusion approximation (2/2)

 $\tau = 0.0675$

