

Compact Muon Solenoic

Searches for long-lived particles at CMS

Małgorzata Kazana CMS Collaboration

NCBJ National Centre for Nuclear Research

Institute of Nuclear Physics Polish Academy of Sciences 1st February 2022 (Virtual) Cracow, PL

Searches for long-lived particles

- LLPs have many possible exotic signatures (model independent analyses)
 - more and more challenging ones are under consideration

- Using the LHC data collected at 13 TeV in Run II up to 138/fb:
 - 2016 36/fb,
 - 2017 42/fb,
 - 2018 60/fb

In this talk, the focus is on recently published by CMS searches for LLP

10⁵

104

10³

10²

 10^{-27}

article Mass *m* [MeV]

Long-Lived Particles (LLPs)

Particles with a **macroscopic lifetime, c\tau \ge 1 mm**

Detector-Stable

e.g. π[±] → μ[±]ν_μ (cτ₀ ~ 7.8m)

oⁿ p→

е

10⁵

[JPPNP 3695 (2019)]

- Particles have: mass (M) and width (Γ)
- Γ is determined by how the particle decays

 B^{\pm}/B^{0}

 10^{-11}

Proper Lifetime τ [s]

- Proper lifetime: $\tau \sim 1/\Gamma$
- Half time: $T_{1/2} = \ln 2 \tau$

Detector-Prompt

ŴZ

Η

οΣ0

 10^{-19}

π

 10^{-15}

• The SM contains a large number of metastable particles

 $\int_{0}^{\pi^{\pm}}\mu$

10-7

10⁻³

10¹

- high scale operators (Λ) (heavy mediator)
- small phase space (**Φ**) (compressed spectra)

M. Kazana

 10^{-23}

LLPs @ CMS, IFJ PAN, 1.02.2022

Why LLPs in BSM?

Small couplings (ε) in Supersymmetry

Example: R-parity Violating SUSY

additional terms in superpotential:

$$\begin{split} W_{\rm RPV} &= \mu_i L_i H_u + \frac{1}{2} \lambda_{ijk} L_i L_j \bar{e}_k \\ &+ \lambda'_{ijk} L_i Q_j \bar{d}_k + \frac{1}{2} \lambda''_{ijk} \bar{u}_i \bar{d}_j \bar{d}_k, \end{split}$$

couplings need to be small to avoid proton decay and flavor violation

LSP long-lived: $\Gamma(X^{o} \rightarrow \ell \ell v) \sim \lambda^{2} m^{5}_{X} / m^{4}_{\ell}$

cτ ~ 1m for λ ~ 10⁻⁴, m_X ~ 100 GeV, m_ℓ ~ 1 TeV

Why LLPs in BSM?

- High scale operators (Λ) (heavy mediator) in Supersymmetry
- Example: Gauge Mediated SUSY Breaking

Why LLPs in BSM?

- **Small phase space (Φ) (***compressed spectra***)** in **Supersymmetry**
- Example: Anomaly Mediated SUSY Breaking

Bunch of LLPs in BSM

The long lifetime is quite a common feature in new physics models

Detector design vs LLPs

CMS: reconstruction algorithms, cylindrical geometry, trigger all designed assuming particles emerge from the collision point

LLPs signature depend on the lifetime cτ:

- **Decay inside various regions of the detector**: *meta-stable LLP* **Cross** the detector: *quasi-stable LLP*

8

Signatures of LLPs

LLPs have unusual final states that require innovative techniques

- Triggering often weird/low energy signatures
- Atypical (non-collision) backgrounds detector noise, cosmic rays, reco failures – has to be estimated from data

M. Kazana

Displaced vertices in multijet events

Signature: displaced jets in the region of a beam pipe

Analysis strategy:

- reconstruct displaced vertices from tracks in events with jets
- focus on intermediate lifetimes cτ (100 µm to 10 cm)
 - first tracking (pixel) layer: 4.4 cm radius
- distinguish signal in two-vertex events using the distance d_{vv} between vertices
- SM background: prompt vertices in events with lots of jets misreconstructed tracks with non-negligible transverse impact parameters

Benchmark:

Pair-produced long-lived neutralinos/gluinos or stops in RPV SUSY

N

2017+2018: 101/fb **Displaced vertices - variable**

Search variable: d_{vv} – xy distance between vertices

LLPs @ CMS, IFJ PAN, 1.02.2022

2017+2018: 101/fb **Displaced vertices - results**

- **Trigger:** on events with large jet activity standard HT = $\Sigma^{Njets}E_T > 1050 \text{ GeV}$
- **Selection:** ≥ 4 jets
- **Control samples:**
 - events with 3-track & 4-track vertices
- **Background:**
 - estimated from ≥5-track one-vertex
- Signal region:
 - ≥5-track two-vertex events

Results: o event observed (≥5-track two-vertex)

		Predicted multijet signal yields				
$d_{\rm VV}$ range	Predicted background yield	0.3 mm	1.0 mm	10 mm	Observed	
0–0.4 mm	0.243 ± 0.003 (stat) ± 0.061 (syst)	4.4 ± 0.5	1.5 ± 0.1	0.26 ± 0.02	0	
0.4–0.7 mm	0.097 ± 0.003 (stat) ± 0.032 (syst)	4.1 ± 0.5	2.1 ± 0.2	0.14 ± 0.01	0	
0.7–40 mm	0.012 ± 0.001 (stat) \pm 0.006 (syst)	3.0 ± 0.3	$\textbf{7.6} \pm \textbf{0.7}$	12 ± 1	0	

10⁻²

100

cτ (mm)

Ξ

Observed $\pm 1 \sigma_{th}$

Expected $\pm 1 \sigma_{exp}$

10

LLPs @ CMS, IFJ PAN, 1.02.2022

Displaced Vertices – low mass di-µ's

Very low mass search

for a muon pair with **displaces vertex** (DV)

masses down to ~2m_µ and displacements L_{xy} up to 11 cm

Benchmark models

- Z_D : 0.5 GeV ≤ m(Z_D) ≤ 50 GeV 0.1 mm ≤ c $\tau_o(Z_D)$ ≤ 1000 mm
- 0.3 GeV \leq m(Φ) \leq **5 GeV** 0.1 mm \leq c $\tau_0(\Phi) \leq$ 100 mm

CMS

CMS silicon tracker

PV

2017-18: 101/fb EXO-20-014, May 2021 Dimuon resonances w/scounting

High rate triggers (scouting):

- Bypass the high-level trigger (HLT) thresholds by directly sending HLT objects to disk instead of saving raw data
- Reduced event info compared to offline reconstructed objects
- DoubleMu trigger path allow sensitivities to otherwise inaccessible low-mass events

Signature :

• At least 2 opposite sign muons ($p_T > 3$ GeV, $|\eta| < 2.4$) and **1 displaced vertex**

Backgrounds:

- Controlled with a set of kinematical cuts
- DV/dimuon kinematics & displacement requirements, material veto to reduce background yields:
 - Sophisticated cuts:
 - $\log_{10} (\Delta \eta / \Delta \phi) < 1.25$
 - # excess pixel hits ≤ 0

 μ_2

PV2

2017-18: 101/fb

EXO-20-014, May 2021

Dimuon resonances – results

Strategy:

- Search for a narrow peak in dimuon invariant mass spectrum
- SM bkg estimated directly from data can be parameterized by analytical functions
 - SM resonances are masked ($\pm 5\sigma_{res.}$ window) for the result
- Events are **categorized in bins** of muon isolation (2,1,0 iso-mu), di-mu momentum $p_T(\mu\mu)$

 Simultaneous fit in all search bins either bkg-only or bkg+signal hypotheses

M. Kazana

LLPs @ CMS, IFJ PAN, 1.02.2022

2017-18: 101/fb Dimuon resonances – limits

- No significant excess is observed CMS Preliminary
- Bkg+signal fits are used to set limits signal models

SM-like Higgs boson decay to leptons via one or two intermediate Z_D through the hypercharge or Higgs portal

CMS Preliminary 101 fb⁻¹ (13 TeV) 10² $B(h \rightarrow Z_D Z_D)$ $gg \rightarrow h \rightarrow Z_D^{} Z_D^{} \rightarrow 2\mu \; 2X(X \neq \mu)$ • m_{Z_D} = 12 GeV Observed limit (95% CL) 10 $m_{Z_D} = 20 \text{ GeV}$ — m_{z,} = 2 GeV + gg \rightarrow h \rightarrow Z_DZ_D \rightarrow 4 μ $m_{Z_D} = 40 \text{ GeV}$ — m_{Zn} = 5 GeV $B(Z_{p} \rightarrow \mu\mu)$ from JHEP 02 (2015) 157 10^{-1} 10⁻² 10^{-3} 10^{-4} 10^{-5} 10⁻⁶ L_____ 10⁻¹ 10² 10^{3} 10 1 $c\tau_0^{Z_D}$ [mm] LLPs @ CMS, IFJ PAN, 1.02.2022

 $\rightarrow Z_D Z_D) \; {\cal B}(Z_D \rightarrow \mu \mu)$

10⁻²

 10^{-3}

10-4

 10^{-5}

EXO-20-014, May 2021

The most stringent constraints to date in a wide range of signal mass (2-40 GeV) and lifetime hypotheses

2017-18: 101/fb Dimuon resonances – limits

No significant excess is observed

Bkg+signal fits are used to set limits signal models

LLPs @ CMS, IFJ PAN, 1.02.2022

HNL lifetime: smaller is the mass (< 20 GeV) or neutrino-mixing (V~ 10⁻⁷ - 10⁻²)

 \rightarrow long-lived HNL

Signature: 3 lepton final state with:

- 2 displaced <u>soft</u> leptons that form a common vertex
- I prompt lepton
- Final states: eeX or μμX where X= {e, μ}

Run2: 138/fb

Heavy neutral leptons

Trigger:

- Single (or double) lepton trigger on prompt lepton to enable sensitivity to low-pT displaced leptons
- Discriminating variables: design to reflect HNL decay kinematics:
 - Distance between primary and secondary vertices (Δ_{2D} < 20 cm)
 - Displaced di-l invariant mass

Backgrounds:

- Unidentified photon conversions
- Misidentified hadrons (K^o_s)

Data-driven estimation of background:

- "tight-to-loose" method in data control regions
- Validate with closure tests in sideband regions

• Events are categorized in SRs by lepton flavor, invariant mass and vertex displacement

 No significant deviations from the SM expectations are observed for eeX and μμX final states Majorana HNL: $m_{\rm N} =$ 1.3 × 10⁻⁶ (HNL6), $m_{\rm N}$

lu = 2

2 GeV and $|V_{N\ell}|^2 =$ = 12 GeV and $|V_{N\ell}|^2$

= 0.8 $|^2 = 1.1$

 $\times 10^{-4}$ (HNL2), $m_{\rm N}$

6 GeV and $|V_{N\ell}|^2$

 1.0×10^{-6} (HNL12).

Events are categorized in SRs by lepton flavor, invariant mass and vertex displacement

No significant deviations from the SM expectations are observed for eeX and µµX final states

 1.3×10^{-6} (HNL6), $m_{\rm N}$ Majorana HNL: m_N

||

12 GeV and $|V_{\mathrm{N}\ell}|^2$

2 GeV and $|V_{N\ell}|^2$

 0.8×10^{-4} (HNL2), $m_{\rm N}$ 1.0×10^{-6} (HNL12).

6 GeV and $|V_{N\ell}|^2$

Ш

Run2: 138/fb

Heavy neutral leptons – limits

EXO-20-009, Jul 2021

Constraints are obtained for HNL Majorana and right-handed Dirac neutrinos

- on the mass and coupling strength parameters (for electrons and muon)
- extending the exclusion limits from previous searches (back to Delphi LEP times)
- and (extending) mixing parameter values in the range of 10⁻⁷ 10⁻⁵

Run2: 138/fb

Heavy neutral leptons – limits

Constraints are obtained for HNL Majorana and right-handed Dirac neutrinos

- on the mass and coupling strength parameters (for electrons and muon)
- extending the exclusion limits from previous searches (back to **Delphi LEP times**)
- and (extending) mixing parameter values in the range of 10⁻⁷ 10⁻⁵

for muon mixing from $\mu\mu X$ channels

EXO-20-009, Jul 2021

Displaced leptons

Signature: displaced lepton pair where both leptons have a large transverse impact parameter (d_o)

- **d**_o is an effective discriminating variable:
- Leptons are expected to come from different secondary vertices, but no such explicit requirement is introduced
- |d_o| > ~100 μm eliminates significantly the SM background

• Analysis strategy: VERY INCLUSIVE SEARCH for LLPs

- Look for eµ, ee, µµ final states with both large d₀
- No explicit constraints on non-lepton physics objects
 - Sensitivity to large range of lifetimes cτ (10 mm to 1 m)
- Kinematical cuts to reject SM bkg that produce displaced leptons

Triggering:

Muon and photon (sensitive to displaced electrons) double triggers (no cuts on vrt)

EXO-18-003, Jul 2021

Run2: 113 - 118/fb **Displaced leptons – inclusive search**

- Inclusive event selection:
 - \geq 2 isolated, high-momentum, well-measured leptons
 - p_T set by trigger turn on (35–75 GeV depending on channel/year)
 - $|\eta| < 1.5$ (for **d**_o resolution)
 - No constraints on other event parameters such as missing energy, jets, etc.

Run2: 113 - 118/fb

EXO-18-003, Jul 2021

Displaced leptons – results

• Events are categorized in SRs by lepton flavor and d_o and momentum p_T

Observation consistent with bg-only hypothesis

Run2: 113 - 118/fb

EXO-18-003, Jul 2021

Displaced leptons – limits

Mass and cross sections constrains over wide range of lifetimes

Higgs boson decaying to long-lived scalars

~600 GeV improvement wrt. previous displaced lepton limits Similar reach as ATLAS-2011.07812 exclusive sensitivity ≤ 10⁻¹ cm

LLPs @ CMS, IFJ PAN, 1.02.2022

Most stringent limits to date for cτ ≤ 50 cm

CMS

Displaced jets with Z boson

 Search for: SM-like (125GeV) higgs boson decaying to light scalar LLPs which decay to b-jets or d-jets and produced with Z boson association

 Trigger and selections based on
 Z boson decays to electron or muon pairs provide sensitivity to light (15 GeV or less) LLPs, which have been up to now difficult to access

 Cut-based displaced-jet tagging using the properties of the tracks associated with each jet

Selections:

- events with at least 2 displaced jets
- no displaced vertex required

Displaced jets in the CMS silicon tracker

2016-18: 117/fb Displaced jet + Z – results & limits

- Events categorized to validate bkg estimate and define a SR region
- Results: 3 events observed wrt 3.5 ± 1.8 events expected

Most stringent CMS limits for the branching fractions $(H \rightarrow SS)$ for low **mass scalars** of around **15 GeV** with mean proper decay lengths of **2-30 mm**, where the scalars decay to a pair of **b quarks**

2016-18: 117/fb Displaced jet + Z vs other searches

 Observed exclusion limit from different CMS hadronic long-lived particle analyses on the branching fraction of the SM- higgs boson to two neutral long-lived scalars

- Complementary results for CMS
 - Z+displaced jets: added a sensitivity to low mass LLP for 15 GeV, S→bb

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV

Phys. Lett. B 797 (2019) 134876, EXO-19-001

Delayed Jets

NEW! Usage of ECAL timing for calo jets

- Signature: Calorimeter deposits of displaced jets from massive LLPs are delayed wrt. jets from prompt decays 1.5m
- Strategy: use ECAL timing to find displaced jets
- Profit: increased acceptance for decays beyond tracker (0.3 - 1.5 m)

ecal

- ECAL: jet time is a median time of all ECAL cells in jet with energy > 0.5 GeV and |time| < 20ns, ΔR(cell, jet) < 0.4
- time resolution per cell (crystal+APD) ~200 ps

2016-18: 137/fb

b Phys. Lett. B 797 (2019) 134876, EXO-19-001 Delayed Jets – stratedy

- Signal: GMSB long-lived gluinos or
 Split SUSY R-hadrons decaying to displaced jets + MET 100
- Selection:
 - ≥ 1 delayed calo jet

 (t > 3ns, pT > 30 GeV, E > 70 GeV, |η| < 1.48)
 - MET > 300 GeV
- Trigger: MET > 120 GeV

Candidate event cleaning:

- beam halo rejected by muon CSC & HCAL
- satellite bunches & mismeasurements veto
- cosmics vetoed by muon DT and RPC
- pileup & APD hits rejected by ECAL timing
- Background:

Data-driven by invert cleaning cuts to form data CRs

• Search region: $N_{jet} \ge 1$, $t_{jet} > 3$ ns

Phys. Lett. B 797 (2019) 134876, EXO-19-001

Events predicted

 $0.02^{+0.06}_{-0.02}$ (stat) $^{+0.05}_{-0.01}$ (syst)

 $0.11^{+0.09}_{-0.05} (\text{stat})^{+0.02}_{-0.02} (\text{syst})$

 $1.0^{+1.8}_{-1.0} (\text{stat})^{+1.8}_{-1.0} (\text{syst})$

137 fb⁻¹ (13 TeV)

Background source

Beam halo muons

Core and satellite

bunch collisions

CMS

Cosmic ray muons

Delayed Jets - results

- **Observed: 0 events** in agreement with bckg. prediction of **1 evt**
- Results (GMSB):

Exclude $m_{\tilde{g}}$ < 2.50 TeV for $c\tau_o$ ~1 m or $m_{\tilde{g}}$ < 2.15 TeV for $c\tau_o$ ~ 30 m

→ Significantly extends reach for $c\tau_0 \ge 1 \text{ m} (vs. \text{ tracker-based searches})$

2016-18: 137/fb

LLPs @ CMS, IFJ PAN, 1.02.2022

JHEP 02 (2019) 179, EXO-18-001

Emerging jets

- The Dark QCD model with long-lived dark-pions, which can decay to SM particles
- Signal:

2 prompt jets and 2 emerging jets

Emerging jets are produced in the hadronization of Q_{DK} to dark hadrons (π_{DK}) which form dark jets, and contain **multiple displaced vertices** from the **decay of dark-pions**

<u> </u>		focus on lifetimes of
Signal model parameters	List of values	rocus on inclines of
Dark mediator mass $m_{X_{DK}}$ [GeV]	400, 600, 800, 1000, 1250, 1500, 2000	1 mm < c7 < 1 m
Dark pion mass $m_{\pi_{DK}}$ [GeV]	1, 2, 5, 10	
Dark pion decay length $c\tau_{\pi_{\rm DK}}$ [mm]	1, 2, 5, 25, 45, 60, 100, 150, 225, 300, 500, 1000	336 signal hypotheses
		, je signar nypotneses

Emerging jets – stratedy

- Data: 16/fb part of 2016 due to saturation-induced dead time present in the readout of the silicon strip tracker
- HLT Trigger: HT > 900 GeV
- Strategy: extension of the displaced jet search and tagger for emerging jets – emerging jets identification:

- **7 Different selections sets** are used with:
 - optimized kinematic cuts on HT, p_T of jets, MET
 - optimized emerging jet tag cuts

2016: 16/fb

JHEP 02 (2019) 179, EXO-18-001

due more decays outside pixel tracker

Weaker constraints for ct ≥ 10 cm

Emerging jets - limits

• **Results:** Observed events agree with bkg. expectation in all 7 selection sets

Set number	Expected	Observed	Signal	Model parameters		
				$m_{X_{DK}}$ [GeV]	$m_{\pi_{\mathrm{DK}}}$ [GeV]	$c au_{\pi_{ m DK}}$ [mm]
<u></u>	$168 \pm 15 \pm 5$	131	36.7 ± 4.0	600	5	1
b 2	$31.8 \pm 5.0 \pm 1.4$	47	$(14.6 \pm 2.6) \times 10^2$	400	1	60
δ0 3	$19.4 \pm ~7.0 \pm ~5.5$	20	15.6 ± 1.6	1250	1	150
4	$22.5 \pm 2.5 \pm 1.5$	16	$15.1\pm~2.0$	1000	1	2
5 <mark>م</mark>	$13.9 \pm 1.9 \pm 0.6$	14	35.3 ± 4.0	1000	2	150
ත <u>ි</u> 6	$9.4 \pm 2.0 \pm 0.3$	11	20.7 ± 2.5	1000	10	300
· · · · · · · · · · · · · · · · · · ·	$4.40 \pm 0.84 \pm 0.28$	2	5.61 ± 0.64	1250	5	225

- First emerging jets search at colliders!
- First Dark QCD results
- Limits do not depend strongly on mass of dark pion π_{DK}
- Exclude dark-mass mediator X_{DK} mass between **400 and 1250 GeV** for ct (π_{DK}) between **5 and 225 mm**

42

Future developments: LLP triggering in Run3

L1 trigger

- Hardware based, information from calorimeters and muon systems only (regional triggers combined to global)
- First pattern recognition and raw measurements
- Fixed latency: 4 μs to accept/reject
- Skims rate to 100 kHz (in total)

High level trigger (HLT)

- Fully software, includes info from tracker
- Similar algorithms as those applied offline
- Latency: 300 ms/events
- Skims rate to 1 kHz max (in total)

Displaced tracking for Run3

110

100

70

L (CM)

гов

z (cm)

100

200

300

PIXEL

-100

-200

- CMS reconstruction designed for particles produced close to the collision point
 - Displacement \rightarrow loss of efficiency
 - Displaced tracks and vertices are lost
- Tracking @ HLT
 - Current baseline:
 - single iteration seeded by pixel tracks
 - Developments:
 - use strip-seeded iteration to recover efficiency for larger displacement
 - used in Run2 for dedicated HLT triggers (not standard tracking)

Tracking offline

- New iteration using predefined Regions of Interest (ROI)
 - pairwise tracks combined together into vertices
 - vertices clustered in spherical ROIs, radius 1 cm, tagged with an MVA
 - tagged ROIs used in tracking algorithm

Trigger for LLPs in Calorimeters

- Hadronic sampling calorimeter (HCAL): plastic scintillator and brass
- Some first level L1 trigger possibilities not fully exploited so far:
 - Timing information (resolution 0.5 ns)
 - \rightarrow **delay** due to kinks/heavy LLP mass
 - Longitudinal depth (4 layers in barrel, 7 layers in endcaps)
 - \rightarrow S/B discrimination (deeper showers)
- Energy ratio $E_{HCAL}/E_{ECAL} \rightarrow$ successful at killing multi-jet background, lower rate

Trigger for LLPs in Muon System

- Cathode Strip Chambers (CSC) in the endcaps: L1 triggering
- Trigger on displaced muons
 - Improved FPGAs \rightarrow better resolution (x4) and bending (x3) wrt Run2
- Trigger on showers (hit clusters from jets)
 - Count cathode/anode hits
 - \rightarrow threshold optimised for S/B and for reasonable L1 trigger rates
 - Can be improved the missing energy approach of Run2 by a factor >10

LLP at CMS summary

 Unconventional signatures of displaced leptons or jets are powerful tools in searches for different LLPs in a model independent way

New results for full Run 2 data pushed limits on LLPs

- Explore challenging the **low mass LLPs**
- Sensitive to wide range of decay lengths
- Searches complement each other

Any detected signal of LLP would be a clear indication of a New Physics

- Therefore, the CMS experiment make an effort for LHC Run 3 to enhance his sensitivity to cached the LLPs by new algorithms of reco and triggering especially at the L1
- EXO CMS public results:

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/LLP.html

Thank you!

Selection of LLP searches at CMS

RPV UDD, $\tilde{g} \rightarrow tbs$, $m_{\tilde{a}} = 2500 \text{ GeV}$ RPV UDD, $\tilde{q} \rightarrow tbs$, $m_{\tilde{q}} = 2500 \text{ GeV}$ RPV UDD, $\tilde{t} \rightarrow dd$, $m_{\tilde{t}} = 1600 \text{ GeV}$ RPV RPV UDD, $\tilde{t} \rightarrow dd$, $m_{\tilde{t}} = 1600 \text{ GeV}$ RPV LQD, $\tilde{t} \rightarrow bl$, $m_{\tilde{t}} = 600 \text{ GeV}$ RPV LOD, $\tilde{t} \rightarrow bl$, $m_{\tilde{t}} = 460 \text{ GeV}$ RPV LQD, $\tilde{t} \rightarrow bl$, $m_{\tilde{t}} = 1600 \text{ GeV}$

> GMSB, $\tilde{q} \rightarrow q\tilde{G}$, $m_{\tilde{q}} = 2450 \text{ GeV}$ GMSB, $\tilde{g} \rightarrow g\tilde{G}$, $m_{\tilde{g}} = 2100 \text{ GeV}$ Split SUSY, $\tilde{g} \rightarrow q\bar{q}\chi_1^0$, $m_{\tilde{g}} = 2500 \text{ GeV}$ Split SUSY, $\tilde{g} \rightarrow q\bar{q}\chi_1^0$, $m_{\tilde{g}} = 1300 \text{ GeV}$ Split SUSY (HSCP), $f_{\tilde{a}g} = 0.1$, $m_{\tilde{a}} = 1600$ GeV mGMSB (HSCP) $\tan\beta = 10, \mu > 0, m_{\tilde{\tau}} = 247 \text{ GeV}$ Stopped $\tilde{t}, \tilde{t} \rightarrow t \chi_1^0, m_{\tilde{t}} = 700 \text{ GeV}$ Stopped \tilde{g} , $\tilde{g} \rightarrow q \bar{q} \chi_1^0$, $f_{\tilde{a}a} = 0.1$, $m_{\tilde{a}} = 1300 \text{ GeV}$ Stopped \tilde{g} , $\tilde{g} \rightarrow q\bar{q}\chi_2^0(\mu\mu\chi_1^0)$, $f_{\tilde{a}a} = 0.1$, $m_{\tilde{a}} = 940$ GeV AMSB, $\chi^{\pm} \rightarrow \chi_1^0 \pi^{\pm}$, $m_{\chi^{\pm}} = 700 \text{ GeV}$ GMSB SPS8, $\chi_1^0 \rightarrow \gamma \tilde{G}$, $m_{\chi_2^0} = 400 \text{ GeV}$ GMSB, co-NLSP, $\tilde{i} \rightarrow l\tilde{G}$, $m_{\tilde{i}} = 270 \text{ GeV}$

RPC

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV

Supported by grant: DIR/WK/2016/2019/15-1

Backup

Displaced vertices - bkg

- Background vertices arise due to misreconstructed tracks with non-negligible transverse impact parameters
- Two-vertex background events are independent rare coincidences of two vertices from separate misreconstructions in one event

- No guarantee that MC can faithfully reproduce such effects
- Use data-driven method

to construct background template that models two-vertex background shape

