

ATLAS results on top quark mass

Frédéric Derue

Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Paris

Seminar in IFJ-PAN 30th November, Cracow, Poland

Work supported by the IN2P3-COPIN collaboration

introduction
 motivations & measurements
 using tī pairs for tuning
 Run 3 and HL-LHC prospects

Top quark as a probe for the SM

Most striking properties

- \circ very short lifetime $\tau{\sim}5{\times}10^{\text{-}25}\,\text{ps}$
 - inhibits to form bound states
 - unique way to study quasi free quark
- heaviest fundamental particle known
 - Yukawa coupling to Higgs boson ~1
 - high relevance to EWK Symmetry Breaking mechanism

• High production rate at LHC

- \circ probed cross sections from ~800 pb to ~20 fb
 - ~100 M tī (~15 pairs/s at 13 TeV)
- allowing for deep understanding of the production mechanisms
- o increasing number of differential measurements with high precision, exploiting new datasets, high-p_⊤ regime,

• Multiple of interesting SM/top properties measurements

2

Motivations for m, measurement

Top quark mass plays a crucial role in the SM

M_w [GeV] gfitter and 95% CL contours = 172.47 GeV 80.5 Fit w/o M_w and m measurements = 0.46 GeV Fit w/o M_w, m and M_H measurements Direct M_w and m, measurements 80.45 80.4 $\begin{array}{l} M_{W} \text{ comb.} \pm 1\sigma \\ M_{W} = 80.379 \pm 0.013 \text{ GeV} \end{array}$ 80.35 80.3 80.25 G fitter sm 190 150 160 170 180 140 m, [GeV]

Electroweak fit

relation between m_t, m_w and m_H
 internal consistency of the SM
 test of high energy scales via radiative corrections

PATLAS

Stability of EW vacuum

- \circ relation between $\rm m_{_{\rm H}}$ and $\rm m_{_{\rm H}}$
 - predict the evolution of the Higgs quartic coupling at high scales, which affects the shape of the Higgs potential
- measured values lead to a vacuum between stability and meta-stability
- \circ search for New Physics

Its definition depends on the renormalization scheme used

ATLAS results on top quark mass, IFJ-PAN, 30th November 2021

LPNHE

m_, definition

The top quark is colour charged and does not exist as an asymptotic state: the value of m_t , extracted from the experiments, depends on the theoretical definition

of the mass, which varies according to the renormalisation scheme adopted: pole mass or running mass.

measured m_t can be connected to the pole mass by means of a relation like

 $m_t = (m_t^{pole} + \delta m_t) \pm \Delta m_t$

 $\delta m_t \sim 0$: the extracted mass through top-decay final-state reconstruction mimics the pole mass, up to some computable uncertainty. $\Delta m_t \sim$ hadronisation scale Nason et al.: arXiv:1712.02796 arXiv:1602.00443 $\delta m_{_t}$: shift between measured and pole mass $\Delta m_{_t}$: uncertainty

 $\begin{array}{l} \delta m_t \sim 200\text{-}900 \text{ MeV} \\ \Delta m_t \text{ is } 250 \text{ MeV}, 280\text{-}380 \text{ MeV} \\ \text{Hoang et al. : NPPS (2008) } 185\text{:}220\text{-}6 \\ arXiv:1708.02586 \\ J\text{HEP (2018) } 10\text{:}200 \\ \text{Butenschoen et al.: PRL (2016) } 117\text{:}232001 \end{array}$

m_, is determined experimentally by performing direct and indirect measurements

m_, direct measurements

Direct measurements m₊^{MC}

- \circ relies on details of MC simulation
 - often named « Monte Carlo mass »
- \circ using reconstructed decay products
 - tt and single top; fully hadronic, lepton+jet, dileptonic ...
 - template methods using « invariant masses »

LPNHE

ATLAS Comb. $m_t = 172.69 \pm 0.25$ (stat) ± 0.41 (syst) GeV EPJC 79 (2019) 290 Systematic uncertainties in Run 1 & 2 are dominated by JES/bJES

PATLAS m, measurement using leptonic invariant mass

Study of t pairs with in final state a B-hadron decaying in $b \rightarrow \mu v$ offers alternative channel to measure m using the sensitivity of m to m ATLAS-CONF-2019-046

– m, = 170.5 GeV

 $-m_t = 172.5 \text{ GeV}$

- m, = 174.5 GeV

60

70

ATLAS Simulation Preliminary

√s = 13 TeV

OS selection

0.16

0.14

0.12

0.1

0.08

0.06 0.04

0.02

1.06

1.04 1.02

0.98 0.96 0.94

20

raction of

172.5 GeV

Motivations

- purely leptonic/tracking observables less sensitive to JES than the ones from jet reconstruction
- still sensitive to parton shower, hadronization, b-fragmentation effects...
 help to reduce the uncertainties in combination of all measurements

30

40

Retuned simulation using

 \circ recalibrated b-quark fragmentation Bowler-Lund parameter r_b~1.05

 \circ recent measurements of hadron production and decay fractions \circ likelihood template fit to $m_{_{\rm hu}}$ spectrum in OS and SS channels

m = 174.48 ± 0.40 (stat) ± 0.67 (syst) GeV

dominant syst. uncertainty : hadron decay branching fractions (~0.4 GeV) and b-fragmentation (0.19 GeV); JES uncertainty reduced to 0.12 GeV ATLAS results on top guark mass, IFJ-PAN, 30th November 2021

m direct measurements

m_i indirect measurements

Indirect measurements m

 \circ measuring cross section

unfolded at at parton-level and compared to the prediction

 \circ well defined renormalization scheme $\Rightarrow m_{_{\!\!\!\!\!}}^{_{\rm pole}}$

tī dileptonic eμ channel (inclusive cross section)

Statistical uncertainty ~0.2 GeV Systematic uncertainties dominated by uncertainties on PDF+ α_s (1.5 GeV)

ATLAS results on top quark mass, IFJ-PAN, 30th November 2021

Systematic uncertainties dominated by JES , PS-hadronisation, colour reconnection ~0.4 GeV each Theo uncertainties scale variations ~0.6 GeV

m_t indirect measurements

Using tī pairs for tuning

Monte Carlo simulation is a crucial ingredient in top analysis and LHC analysis where top quark is an important background It is a limiting factor in many precision measurements

• Covered in this talk

- \circ colour reconnection tuning
- measurement of observables sensitive to b-quark fragmentation parameters
- \circ interpretation of MC top mass parameter in the generators
- towards common ATLAS/CMS MC samples

Colour reconnection in tī events

Motivation

ATLAS

- \circ interactions and interference between the top decay products during hadronization
- sub-dominant contribution of the quoted top quark mass uncertainties, to be reduced
- \circ colour reconnection between hadrons in jets affect the jet energy distributions inside and between jets
- techniques to exploit colour reconnections can be tested using jets with an expected colour structure, e.g jets from a W boson in top quark decays, and

compared to jets without colour flow, e.g between the two b-jets of the tt system.

Method

- o the jet pull vector 𝔅 (𝔅) predicted to contain information about the colour representation of a dijet system
 o measure quantities derived from the jet pull vector
 - p₋-weighted radial jet moment

$$\vec{\mathcal{P}}(J_1) = \sum_{i \in J_1} \frac{p_T^i \cdot \left| \vec{r}_i \right|}{p_T^J} \vec{r}_i \quad \text{magnitude} \quad |\vec{\mathcal{P}}|$$
$$\vec{\mathcal{C}}(J_1, J_2) = \vec{J}_2 - \vec{J}_1$$
$$\theta_{\mathcal{P}}(J_1, J_2) = \triangleleft \left(\vec{\mathcal{P}}(J_1), \vec{\mathcal{C}}(J_1, J_2) \right) \text{ angle } \theta_{\mathcal{P}}$$

For two colour-connected jets, J1 and J2, it is expected that P(J1) and P(J2) are aligned with the jet connection vector, i.e. $\theta_{p} \sim 0$

Colour reconnection in tt events

EPJC 78 (2018) 847

'signal' color flow (left) is best modeled by Powheg+Herwig7
 data prefers less strong effect (smaller angle) and wider jets (larger magnitude)
 'spurious' color flow (middle) is generally well modeled, except by Powheg+Herwig7

 \circ 'spurious' color flow (middle) is generally well-modeled, except by Powheg+Herwig7

 data agree more (right plot) with the SM description than with the colour-flipped (BSM) model

b-quark fragmentation in tt events

Motivation

- \circ check/quantify our knowledge of hadronization of b-quarks in hadron collider
- \circ today's partonic shower generators tuned to LEP results
 - LEP results were done based on $ee \rightarrow Z \rightarrow bb$
 - events in a clean environment with back-to-back events : production of bb colour singlets, no colour reconnection to the beam or underlying events

Use of LHC events

- \circ measurements of b-jet moments sensitive to b-quark fragmentation t\bar{t} events (e_{\mu} channel, 2015-2016 data)
- observables used at LHC are relative to the jet, and use information from associated charged tracks
 ATLAS-CONF-2020-050
- \circ unfolded to particle level

$$z_{\mathrm{T},b}^{\mathrm{ch}} = \frac{p_{\mathrm{T},b}^{\mathrm{ch}}}{p_{\mathrm{T},j\mathrm{et}}^{\mathrm{ch}}}$$
$$z_{\mathrm{L},b}^{\mathrm{ch}} = \frac{\vec{p}_{b}^{\mathrm{ch}} \cdot \vec{p}_{j\mathrm{et}}^{\mathrm{ch}}}{|p_{j\mathrm{et}}^{\mathrm{ch}}|^{2}}$$
$$\rho = \frac{2p_{\mathrm{T},b}^{\mathrm{ch}}}{p_{\mathrm{T}}^{e} + p_{\mathrm{T}}^{\mu}}$$

 $n_b^{\rm ch}$ = number of fiducial *b*-hadron children.

 Powheg+Pythia8 / Powheg+Herwig 7 / Sherpa successfully predict shape of observables

LPNHE

PATLAS Interpretation of m_{f} parameter in generators

Motivation

 compare the boosted jet mass distribution from hadronic tops in MC to analytical calculation with npQCD effects at particle level

• relation $m_t^{MC} = m_t^{MSR} (1 \text{ GeV}) + \Delta m_t^{MSR}$

 \circ nominal MC : Powheg+Pythia8, m₁=172.5 GeV

• consider also Powheg+Herwig7,

Analysis

arXiv 1708.02586

 \circ Soft-Collinear Effective Theory: prediction of $d\sigma_{_{\!f\!f}}$ as a function of the jet mass at

NLL precision at particle level

 \circ inclusive treatment of hadronic

top quark decays

• events with at least 1 large R-jet with p_{T} >750 GeV

(to capture decay products in a single jet)

- large R-jet to hadronically decaying top parton matching applied
- build mass distributions in 3 bins of $\textbf{p}_{_{T}}$ at particle level
- light soft-drop grooming to remove soft-wide radiation
- \circ 3 free parameters: m (pole~MSR), Ω (np-QCD parameter, first moment

of hadronic shape function) and x_2 (ratio of second moment to Ω)

does not account for UE effects

PATLAS Interpretation of m_{f} parameter in generators

ATL-PHYS-PUB-2021-034

• Results

 $\circ \chi^2$ fit to find the theory prediction that best describes MC (Powheg+Pythia8)

$$m_t^{MSR}$$
 (1 GeV) = 172.42±0.10 (stat) GeV
 Ω_{1q} = 1.49±0.03 GeV, x_2 = 0.52±0.09
 m_t^{MC} = m_t^{MSR} (1 GeV) + 80⁺³⁵⁰₋₄₈₀ MeV

$$m_t^{MC} = m_t^{pole} + 350_{-360}^{+300} MeV$$

- similar results found for Powheg+Herwig 7: 172±0.09 (stat) GeV (in spite of the harder jet mass spectrum)
- main uncertainty from missing higher orders in theory

/ 500 Me/ **ATLAS** Simulation Preliminary 0.09 pp \rightarrow tt, XCone R=1.0 jets 0.08 Soft-drop ($z_{cut}=0.01, \beta=2$) Vormalized events 0.07 1000 GeV < p_ < 1500 GeV 0.06 Powheg + Pythia8 NLL prediction, MSR mass 0.05 NLL prediction, pole mass 0.04 Theory Unc. 0.03 0.02 0.01 170 175 185 165 180 190 Large-R jet mass [GeV]

The result is compatible with that obtained in e^+e^- collisions and future advances in the formal accuracy of the theory calculations may lead to reduction of systematic uncertainties [PRL 117, 232001 (2016)]

To take advantage of this relation in an optimal way, a direct top mass measurement in boosted top quark production is needed

Modelling uncertainty recommendations

ATLAS and CMS use same generators but have different settings and procedures to assess uncertainties associated

LPNHE

SATLAS An ATLAS/CMS Top quark common sample

Motivation

- a tt sample with common settings would facilitate ATLAS-CMS combinations and comparisons and could :
 - help to understand correlations of systematic uncertainties due to MC modelling
 - remove differences in high-precision measurements
 - be used as baseline prediction
- \circ first step towards sharing resources, for current and future generators

• Production of a first sample (Powheg+Pythia 8 tt) with common settings

- \circ approximate average settings for all physical parameters (not optimised to data)
- \circ produced independently in the respective frameworks

good agreement within statistical uncertainties

 \circ differences observed in many distributions (e.g jet kinematics and resonance masses) \circ next step: obtain a set of tuned parameter settings

ATLAS results on top quark mass, IFJ-PAN, 30^{th} November 2021

Prospectives for Run 3 and HL-LHC

LHC / HL-LHC plan

Recent test collision event at 450 GeV

Plan and ideas for m_t at Run 3

• Top quark @ Run 3 and top quark physics

 \circ slight increase in instantaneous and integrated luminosity x2 to collect up to 300 fb⁻¹

- yield increase : 300M tī events, 30 M tW, 3 M s-channel, 3k 4-top
 - many analyses will benefit from this increase : FCNC, ttX, 4-top

Ideas for top quark mass studies

new measurements

- pole mass scan $\sigma(m_t)/m_t \sim 1.2 \sigma(m_{t\bar{t}})/m_t$ (JHEP 0901:047,2009)
- top mass running (e.g CMS PLB 803 (2020) 135263)
- \circ using differential measurements
 - shed light on nature of MC mass
 - does MC mass depend on event kinematics?
 - how is dependence described by different generators?
 - differential mass measurements should be possible
- direct measurements
 - for standard measurements (I+jet, dilepton ...)
 - $\rightarrow\,$ can trade statistical precision to better systematic uncertainties
 - \rightarrow 3D fit: mt, JSF, bJSF \rightarrow ND fits
 - \rightarrow in-situ constraints on non-pert. QCD and from ancillary measurements
 - top quark mass measurements using alternative extraction methods,
 - \rightarrow soft muons
 - → J/ ψ → µµ cf. CMS mt=173.50±3.00(stat)±0.90(syst) GeV JHEP 12 (2016) 123
 - $\rightarrow\,$ complement systematics $\,\rightarrow\,$ gain in combination

All (MC) mass analysis potentially gain a lot of precision in Run 3

HL-LHC key parameters

• HL-LHC

- the HL-LHC represents the ultimate evolution of LHC machine performance
- \circ operation at 14 TeV
- \circ instantaneous nominal luminosity x5-7.5 up to L=7.5×10^{34}\,cm^{-2}\,s^{-1}
 - increased particle densities
- \circ integrated luminosity x10 to collect up to 3-4 $ab^{\text{-1}}$
 - increased radiation damage
- \circ challenging experimental conditions
 - up to 140-200 p-p collisions per bunch crossing
 - mitigated by extensive upgrades of experiment during LS3

• Top @ HL-LHC

huge yield increase : 3B tt̄ events,
300 M tW, 30 M s-channel, 30k 4-top

a simulated tī event at average pile-up of 200 collisions per bunch crossing [Upgraded Event displays]

m_{\downarrow} measurements using $b \rightarrow J/\psi \rightarrow \mu^{+}\mu^{-}$

Study of t pairs with in final state a B-hadron decaying in J/ψ (b $\rightarrow J/\psi \rightarrow \mu\mu$) offers alternative channel to measure m_t using the sensitivity of m_t to m_t

Motivations

- purely leptonic/tracking observables less sensitive
- to JES than the ones from jet reconstruction
- still sensitive to parton shower, hadronization, b-fragmentation effects...
- help to reduce the uncertainties in combination of all measurements
- Low BR final states

 \circ BR(b \rightarrow J/ $\psi \rightarrow \mu\mu$) \sim 6.8×10⁻⁴

"Standard Model Physics at the HL-LHC and HE-LHC"

CERN Yellow Report arXiv:1902.04070

VATLAS

ATL-PHYS-PUB-2018-042

- Number of expected events: 2×10^5 candidates
 - 18% additionnal events thanks to higher cross section
 - 10% additionnal events thanks to larger coverage in $|\eta|{<}4$

$$\sigma(m_t) = 0.14 \text{ (stat)} \pm 0.48 \text{ (syst) GeV} \sim 0.50 \text{ GeV}$$

ATLAS results on top quark mass, IFJ-PAN, 30^{th} November 2021

Conclusion

Run 2 legacy

- top quark mass measured with a precision already around 0.5 GeV relative precision of ~0.3%
- \circ direct measurements done in a wide variety of channels
 - most of measurements are already systematically limited
 - largest experiment uncertainy stem from the calibration of the jet and b-jet energy scales
 - largest modelling uncertainties originate from the parton shower and hadronisation models
- \circ indirect measurements limited by theory uncertainties

Run 3 and HL-LHC prospects

- for Run 3 statistics will be about twice the one of Run 2 with rather similar data taking conditions
 dramatic change for HL-LHC data taking
- with gain of factor 10 in statistics

need to improve t modelling to avoid systematic uncertainties wall \Rightarrow work already ongoing with Run 2 data

All ATLAS results on top quark physics can be found in: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

Backup slides

tt decay modes

Colour reconnection in tt events

• Definition of three Colour reconnection models

 \circ new models / MC samples now used for analyses

- minimise the colour string length across different parton-parton interactions
 - CR0 default model. Merges complete MPI systems, starting with the hardest
 - CR1 new model. Considers all dipole pairs and joins them if a) allowed and b) doing so reduces the colour string length
 - CR2 new model. Considers all "final" gluons and moves them between a parton pair if doing so reduces the total string length

ATLAS results on top quark mass, IFJ-PAN, 30th November 2021

LPNHE

Mattas Interpretation of m₁ parameter in generators

Generator setup and reconstruction

 \circ nominal MC : Powheg+Pythia8, $m_{_{t}}^{_{MC}}$ = 172.5 GeV

- consider also Powheg+Herwig7, aMC@NLO+Pythia 8, and various MC settings
- Reconstruction
 - events with at least 1 large R-jet with p_{τ} >750 GeV (to capture decay products in a single jet)
 - large R-jet to hadronically decaying top parton matching applied
 - build mass distributions in 3 bins of $\textbf{p}_{_{T}}$ at particle level

\circ hadronization shifts and smears the peak (particle level)

- \circ radiation from decay products enhances low mass tail (FSR)
- \circ MPI broadens the distribution and lifts the high mass tail
- $\,\circ$ grooming reduces sensitivity to hadronization and UE effects

ATLAS results on top quark mass, IFJ-PAN, 30^{th} November 2021

ATLAS Phase II upgrade

- \circ Upgraded Trigger and Data Acquisition System : L1 @ 1 MHz, HLT : 10 kHz
- \circ new all silicon tracker $|\eta|$ <4
- \circ new dedicated endcap timing detector 2.4<| $\eta|$ <4
- improved muon coverage (new muon chambers in the inner barrel region) and trigger
- electronics upgrade: LAr calorimeter,
- Tile calorimeter, Muon system
 large upgrade of computing resources

Run 2 luminosity

LuminosityPublicResultsRun2

CMS alternative m, measurements

CMS TopSummary

LPNHE

CMS m, precision projections

LPNHE

