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Outline:
- Spectrum, propagation of UHECRs, Hillas diagram,..
- Sources of UHECRs: GRB, AGNs, LL-GRB, TDEs,.. 
- Multi-messenger approach and UHECRs
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source: R. Engel

The Ultra-High-Energy Cosmic Ray mystery
> What’s their composition?
> Where do they come from?

→ anisotropies weakly   
correlated to known    
possible sources: 
active galactic nuclei,  
gamma-ray burst,…

> How do they reach such 
tremendous energies? 

Spectrum suppression:    
in the past: the GZK cut-off      
now: rather the efficiency limit 

of particle acceleration
by sources

LHC x 100

supernova

remnatns (?)

Sources of UHECRs ?

?

Particle physics beyond
the reach of colliders
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Greisen-Zatsepin-Kuzmin (GZK) effect (1966)
cosmic ray absorption 
in Cosmic Mirowave Background CMB (1965)

UHECRs propagation to Earth

Photo-pion production Photo - nuclear interactions
photon-disintegration, hadronphotoproduction,... 

(Hooper, Taylor et al., PRD 2008)

> suppression of cosmic ray flux above energy 
of 4 x 1019 eV (GZK-cut-off), 

maximum source distance of 50-100 Mpc 3

> disruption of higher mass nuclei into  
lower mass fragments (nuclear cascade)

see more in J. Stasielak talk 



Acceleration requirements:

source: K.Kotera & A.  Olinto 2011

Updated Hillas diagram
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Larmor radius:

> The first condition for successful acceleration:
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Credits: quarkmag.com

Credits:NASA/Swift/Mary Pat Hrybyk-Keith, J. Jones)

Credits: futurism.com

Credits: universetoday.com



Pulsars,
magnetars

High Luminosity 
GRB

Transient 
sources

AGNs:  FR I (BlLac)
FR II (FRSRQ)

Steady 
sources

Galaxy Clusters

AGN Flares

Low Luminosity 
GRB

A luminosity bound
> The second condition for successful acceleration:

The acceleration time:
depends on acceleration 
mechanism and environments

The dynamical time (time scale of energy 
loss)

Lemoine & Waxman 2009

The luminosity that a source must possess in order 
to be able to accelerate particles up to E20=  E/1020   eV

Luminosity

Lorentz factorSchock velocity

106 – 107 s

103 – 104s

10– 100 s
0.1– 1 s

See for more details:
K.Komiko A . Kotera Annu.  Rev.  Astron.  Astrophys 2010 

> The third condition: 
sources must possess the required energy budget 
to produce the observed UHECRs flux 
( EUHE QEUHE > 5 x 1043 erg s-1 yr-1) (enough sources density )
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long-duration GRB
short-duration GRB



First order Fermi acceleration



Second order Fermi acceleration



GRBs and SuperNovas (time scale of seconds/minutes)

from arXiv:1511.01396

> ‘long GRBs’ > few seconds
as a source of high energy neutrinos

MeV neutrinos at collapse

TeV neutrinos at collapse
Meszaros & Waxman, 2001
Razzaque et al. 2003 

PeV neutrinos  from
internal shock
Waxman & Bahcall, 1997
Gupta &Zhang  2006
Murase &Nagataki  2006

PeV-EeV neutrinos  from flares
Murase &Nagataki 

EeV neutrinos 
from external shocks 
Dermer 2001
Waxman & Bahcall 2000 

> SNII neutrinos (choked  jets)
S.  Ando, J.F. Beacom 2005

Less relativistic jet than for 
GRBs and the jet inside 
the star envelope  
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Credits: fermi.gsfc.nasa.gov

the fireball model:

> The different shock waves will be traveling at different relativistic speeds, and it is the interaction between 
these  different shock fronts that cause the energetic gamma-ray/neutrino emissions.



Image credit: NASA E/PO,Aurore Simonnet, Sonoma State University

„Blazar“
Viewing down the jet

„Quasar/Seyfert 1“
Viewing at an angle to the jet

„Radio Galaxy / Seyfert 2“
Viewing at 90° from the jet

Black Hole

Accretion Disc

Torus of neutral
gas and dust

Radio jet

Active Galactic Nuclei (AGN)

Credit: Aurore Simonnet, Sonoma State University
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FSRQ (Flat Spectrum Radio Quasar):
shows strong atomic lines in their optical 
and UV spectra  Quasar) BL Lac

arXiv:0908.2996v1 [astro-ph:HE]

Optical spectra
Emission line

Blazars
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?

Leptonic models:
Synchroton self-Compton 
(SSC) models,..

Hadronic models:

or/and

?

MeV to TeV γ-rays

arXiv:1011.1053v1 [astro-ph:HE]

The spectral energy distribution (SED) 3C 66A (BL Lac)

e- synchroton peak
~IR to X-rays

Inverse Compton peak, etc. ..

1) Photo-meson production:

2) p-p interaction:

Hadronic models predict
neutrino flux correlated with photon flux

Photon spectrum

Blazars
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Different Scenarios with varying degree of jet formation

Source: I. Bartos and M.  Kowalski, 2017

Jets are great astroparticle accelerators
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LL-GRB



But,
there is only weak evidence that AGNs are sources of UHECRs
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The Pierre Auger Observatory search for UHECR correlation with:

> γ-ray detected Active Galactic Nuclei 
• 2FHL AGNs (Fermi-LAT)
• 17 objects within 250 Mpc

> Starburst Galaxies
• Fermi-LAT search list for 

star-formation objects 
• 23 objects within 250 Mpc significance 3.9σ

significance 2.7σ

Astrophysical Journal Letters, 853:L29 (2018)



The Pierre Auger Observatory search for UHECR correlation with:

> Starburst Galaxies
• Fermi-LAT search list for 

star-formation objects 
• 23 objects within 250 Mpc

fanisotropy = 10%, Ψ = 13o

significance 3.9σ

> γ-ray detected Active Galactic Nuclei 
• 2FHL AGNs (Fermi-LAT)
• 17 objects within 250 Mpc

fanisotropy = 7%, Ψ = 7o

significance 2.7σ

Likelihood ratio analysis
• correlation angle Ψ (takes into account the 

unknown deflections of the UHECRs in the 
magnetic field)

• H0: isotropy
• H1: (1-f) x isotropy + f x fluxMap(Ψ)
• Test Statistic = 2 log( H1 / H0 )

2σ
1σ

1σ

2σ

Ψ

Ψ

fanisotropy

fanisotropy

Astrophysical Journal Letters, 853:L29 (2018)
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Also classical GRBs do not fully explain
the origin of UHECRs 

15



Using the timing and position information 
of each GRB, IceCube put the limit on 
GRB associated neutrinos

—> GRB cannot be a source 
of observed neutrinos*

* The analysis focus only on the prompt 
phase (afterglow GRB  phase is not included)

IceCube:  AGNs and  GRBs analysis

> IceCube searches constrain the maximum contribution of blazars (for steady emission)  
in the Fermi - LAT 2LAC  catalogue to the observed astrophysical neutrino flux to be 27% or 
less between around   10 TeV and 2 PeV, assuming equi-partition of flavors at Earth and  a 
single power-law   spectrum.                    

IceCube Collab., Astrophysical Journal  835, no. 1, p. 45   

IceCube Collab., The Astrophysical Journal,  843, no. 2 , p.13 
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This suggests that blazars are identifiable sources of the high-energy astrophysical neutrino 
flux, but the neutrinos and the bulk of the gamma rays observed from TXS 0506+056 cannot 
have been initiated by the same process -->  more sophisticated AGNs jet models required

… but TXS 0506+056 is also the first source of UHECRs ?
> A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in   

direction and time with a gamma-ray flare (Fermi, MAGIC) from the blazar TXS 0506+056

> In addition an excess of high - energy
neutrino events at the position 
of TXS 0506+056
between Sept. 2014 and March 2015.

> 3.5σ evidence for neutrino emission 
from the direction of TXS 0506+056,
independent of and prior 
to the 2017 flaring episode. 
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IceCube, Fermi, MAGIC, …, Science. 361 (6398): 147–151.



Auger observation of dipolar anisotropy above 8 EeV

Large-scale anisotropy can arise from: 
> inhomogeneous large-scale distribution on sources
> diffusion in extragalactic magnetic fields from

dominant nearby sources

galactic 
coordinates

Observed dipole, Gal. coord. (l, b) = (233°, −13°), ~120°
away from GC -> disfavours galactic origin

Distribution of of galaxies 
in the nearby Universe : 
2MRS catalog

Traces of CRs in the galactic 
magnetic field

Galactic 
center

95 % C.L.

68 % C.L.

The Pierre Auger Collaboration, Science 357 (2017)
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> UHE neutrinos arise 
from decays of charged pions:

> Neutrinos/photons are also produced from interaction 
of cosmic-rays with CMB
(GZK or cosmogenic neutrinos/photons) 

> The determination of the origin of CRs is a difficult task since CRs are deflected during propagation
and the extent of this angular deflection is still poorly constrained. 

> On the other hand, neutrinos propagate unaffected from their sources to us. They can deliver
potentially valuable information on the sources of the most energetic CRs.

Image: Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC

> Photons arise 
from decays of neutral pions:
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Deflection in Galactic and
extragalactic mag. Fields

Multi-messenger approach and UHECR propagations



Extragalactic gamma-ray Background (EGB) 

> such studies can place also the limit on spectral index of neutrino sources, 
Importance of sources with hard spectrum, Second Fermi Hard Source List  (2FHL)

EGB

pp model ->  Γ< 2.1 - 2.2 
K. Murase, M. Ahlers, B. Lacki  PRD D88 121301

> Extragalactic gamma-ray Background (EGB) measured by Fermi-satellite  constraints the 
energy density of   hadronic gamma-rays & neutrinos

(arxiv/1511.00688)
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star-forming galaxies



Extragalactic gamma-ray Background (EGB) 

> Cosmic-ray induced gamma-ray emission in star-forming galaxies 
as the dominat source of HESE  (arxiv/1306.3417), but in (arxiv/15.11.00688)
evidence against star-forming galaxies

> such studies can place also the limit on spectral index of neutrino sources, 
Importance of sources with hard spectrum, Second Fermi Hard Source List  (2FHL)

EGB

pp model ->  Γ< 2.1 - 2.2 
K. Murase, M. Ahlers, B. Lacki  PRD D88 121301

> Extragalactic gamma-ray Background (EGB) constraints the energy density of   
hadronic gamma-rays & neutrinos

(arxiv/1511.00688)

arxiv:1410.3696
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star-forming galaxies

Non-blazar 
contributions (14%)



„Radio Galaxy / Seyfert 2“
Viewing at 90° from the jet

Construction finished December 2010

Amudsen-Scot 
South Pole
Station

IceCube

Runway
Construction:

2005:          1st String

2006:   +8 = 9 strings

2007:  +13 = 22 strings

2008:  +18 = 40 strings

2009:  +19 = 59 strings

2010:  +20 = 79 strings

2011:    +8 =  86 strings

60 Digital Optical Modules
per string

5160 modules in Ice
1 km3 instrumented 

volume

IceTop:
81 stations
324 modules total
1 km2 surface array

1450 m

2450 m

2820 m

IceTop

Antarctica

Digital optical 
module

IceCube-Detector



Muon

Muon-Neutrino

Detection principle: Cherenkov light from charged particles produced in neutrino interaction

IceCube

nµ

nuclear
reaction

• blue (Cherenkov) light produced 
• optical sensors capture (and map) the light

Charged Current Interaction

Digital optical module

IceCube-Detector (basic detection principe)



IceCube-Detector (~ 1 PeV event)



Global picture – energy density and multi-messenger physics 

Energy density per decade similar
in all three messenger particles

> Despite ten orders of magnitudes difference in energy, UHECRs, IceCube neutrinos, Fermi   
non-blazar EGB share similar energy injection rate.

Murase, Ahlers , B.C. Lacki, PRD (2013) E. Waxman 1312.0558  Giacin et al (2015) Murase & Waxman PRD (2016) , Wang & Loeb PRD  
(2017)
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à This may indicate a common origin of these signals, which provides excellent conditions

for multi-messenger studies 



Example of follow-ups of astrophysical transients: GW170817



Choked Jets and Low-Luminosity GRBs
> AGNs,GRBs, Star-form./burst galaxies do not explain the IceCube neutrino signal

...IceCube neutrinos are also not traced by extragalactic γ-emitters* (VERITAS, MAGIC, Fermi) è
IceCube neutrinos could originate from environments with high γ-ray opacity 

N. Senno, K. Murase, P. Meszaros Phys. Rev. D 93, 083003 (2016); E. Nakar, The Astrophysical Journal, 
807 2 (2015) ->LL GRB 060218/SN 2006 AJ,     * except TXS 0506+056

- Neutrinos
- γ-ray absorbed
- Time scale: 101.5 - 102.5 s

- neutrino precursor
- Later γ-ray counterpart 
- Time scale: 10 - 1000 s

- neutrinos
- γ-ray emission  
- Time scale: 103.5 s

(A) (B) (C)

> Choked jets and Low Luminosity GRBs as hidden neutrino sources 

> UHECRs produced in the nuclear cascade in the jets of LL-GRBs can describe the UHECR    
spectrum and composition, and at the same time, the diffuse neutrino flux at the highest   
energies. D.Boncioli, D. Biehl, W. Winter  The Astrophysical Journal, 872, 1 27

https://iopscience.iop.org/journal/0004-637X
https://iopscience.iop.org/volume/0004-637X/872
https://iopscience.iop.org/issue/0004-637X/872/1


Choked Jets and Low-Luminosity GRBs

> Tidal disruption jets (TDEs) of supermasive black holes èhidden neutrino sources è
can also explain IceCube neutrinos, but again dark in GeV-TeV γ-rays (arxiv:1512.08596)

(C)

(B)
(A)

N. Senno, K. Murase, P. Meszaros (arxiv: 1512.08513)

Ø Choked jets sources are dark in GeV-TeV gamma rays, so only neutrino are predicted

(A)

IceCube HESE

IceCube EHE 

(B)

(C)
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Low-Luminosity GRBs and Tidal Disruptions Events

N. Senno, K. Murase, P. Meszaros Phys. Rev. D 93, 083003 (2016); E. Nakar, 
The Astrophysical Journal,  807 2 (2015) ->LL GRB 060218/SN 2006 AJ,     

> Choked jets and Low Luminosity GRBs as hidden 
neutrino/UHECR sources 

> UHECRs produced in the nuclear cascade in the jets of LL-GRBs/TDEs
can describe the UHECRs
spectrum and composition, and at the same time, the diffuse 
neutrino flux at the highest energies D.Boncioli, D. Biehl, W. Winter  The Astrophysical Journal, 872, 1
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Stars that pass within the tidal radius 
of a super-massive black hole are disrupted 
and a large fraction of the resulting debris 
gets accreted onto the black hole.

-> outside the black hole horizon 
a luminous flare of thermal emission 
is emitted

C. Guépin et al. A&A 616, A179 (2018)  

> UHECRs and neutrinos from Tidal Disruptions 
by Massive Black Holes

https://iopscience.iop.org/journal/0004-637X
https://iopscience.iop.org/volume/0004-637X/872
https://iopscience.iop.org/issue/0004-637X/872/1


UHECRs and neutrinos from Tidal Disruptions by Massive Black Holes

Injection of 70% Si and 30% Fe

> Stars that pass within the tidal radius of a super-massive black hole are disrupted and a large   
fraction of the resulting debris gets 
accreted onto the black hole.

-> outside the black hole horizon a luminous 
flare of thermal emission is emitted

C. Guépin et al. A&A 616, A179 (2018)  30See more for Auger mass  composition in J. Stasielak talk 



> Black hole jets embedded in galaxy clusters can simultaneously explain UHECRs,
high-energy neutrinos, and the non-blazar component of isotropic gamma-ray background

Black hole Jets in Clusters of Galaxies

K. Fang and K. Kotera,Nature Phys. 14 (2018) 396
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Summary

> Still there are open questions about the origin of UHECRs
- classical AGNs, GRBs, star-form./burst galaxies do not yet fully explain 
the origin of UHECRs 

but ..
- the first source of CRs  is TXS 0506+056  and it is a blazar
- first time detection of a GRB at sub-TeV energies by MAGIC 

(GRB 190114C,  ATel #12390)

On the other hand 
- UHECRs/neutrinos could originate from environments with
high γ-ray opacity like LL-GRBs, TDEs, ...

> Era of multi-messenger physics
- black hole jets embedded in galaxy clusters can simultaneously

explain UHECRs, high-energy IceCube neutrinos, and the non-blazar component of       
isotropic gamma-ray background measured by Fermi satellite.
K. Fang and K. Kotera,Nature Phys. 14 (2018) 396
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Top-down models of UHECRs

- Sources of UHECR and astrophysics

X-particles from:
-topological defects
- monopoles
- cosmic strings
- cosmic necklaces

QCD: ~ E-1.5 energy spectrum
QCD+SUSY: ~ E-1.9 spectrum
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