The Pierre Auger Observatory: review of latest results and perspectives

Cosmic rays (CRs) – high-energy particles coming from space (protons, nuclei, neutrinos, photons, electrons,...)

Ultra High Energy Cosmic Rays (UHCRs), E > 10¹⁷ eV

Cosmic-Ray mystery

Greisen-Zatsepin-Kuzmin (1966) – cosmic ray absorption in Cosmic Mirowave Background CMB (1965): $p + \gamma_{cmb} \longrightarrow \Delta(1232) \longrightarrow p + \pi^0 \quad \text{or} \quad n + \pi^+$

suppression of cosmic ray flux above energy of 4 x10¹⁹ eV (GZK-cut-off), maximum source distance of 50-100 Mpc

Extended air showers

Oldest technique in the field: **Rossi group at MIT** in late 1940

Array at Harvard consisting of 12 0.9m2scintillators up to 1 EeV, 1959:

Vulcano Ranch in New Mexico 19 3.26 m² scintillators almost 1 km apart covering about 10 km up to 10 EeV, 1962-87:

Haverah Park (England) with water tanks that absorb the em component and produce Cherenkov light (a vertical muon on average produces 220 MeV (10 km2)

Yakutsk: scintillators, Cherenkov light detectors and muon detectors (20 km²) with smaller spacing

Akeno: 1979 20 km² -> Agasa 100 km²

Sidney: 100 km2 array of muon counters of 6 m² of liquid scintillator viewed by1 PMT on a 1600 m square grid buried to have a muon threshold of 1 GeV

KASKADE: experiment

KASCADE

Measurements of air showers in the energy range $E_0 = 100$ TeV - 80 PeV $\Rightarrow = \underline{KA}$ rlsruhe <u>Shower Core and Array Detector</u>

KASKADE: results

 $E_{max} \propto Z$? Knee as effect of accelartion of CR in sources like for example supernova

AGASA: Akeno Giant Air Shower Array

AGASA: Akeno Giant Air Shower Array

111 detektorów elektronów 27 detektorów mionów

AGASA: Akeno Giant Air Shower Array

Reconstruction of the EAS in the ground grid

The highest energy event from the AGASA detector (E~2.0 × 10²⁰ eV) on December 3, 1993 $\rho(\mathbf{r}) \propto \mathbf{k} \ \mathbf{r}^{-(\eta + \mathbf{f}(\mathbf{r}))}$ $\mathbf{E}_0 = \mathbf{a} \ \rho_{600}{}^{\mathbf{b}}$

Caviat: a,b from MC simulations

The fluorescence detector: HiRes (1985 year)

HiRes

The fluorescence detector: HiRes (1985 year)

Energy spectrum measured by AGASA and HiRes

inconsistency of spectra due to the use of different detection techniques ?

The largest detectors of ultra-high energy cosmic rays

(southern hemisphere) Pierre Auger Observatory (Auger) Area: 3000 km² Location: Argentina

Pierre Auger Collaboration

1995: proposal to construct the Pierre AugerObservatory,

International Collaboration: Now: 16 countries, 98 institutions, 500+ collaborators

James Cronin, 1931-2016

Argentina Australia Brasil Colombia* **Czech Republic** France Germany Italy Mexico Netherlands Poland Portugal Romania Slovenia Spain USA

*associated

Pierre Auger Observatory

> Full members Associate members

Surface Water Cherenkov Detectors (SD's)

Surface Water Cherenkov Detectors (SD's)

Fluorescence Telescopes (FD's)

Fluorescence Telescopes (FD's)

FD telescopes at Los Morados

Fluorescence Telescopes (FD's)

Combined FOV $1.5^\circ - 58^\circ$

Example of hybrid : event seen by SDs and FDs

Detection of air showers

Surface Detector (SD)

Fluorescence Detector (FD)

Hybrid Energy Calibration

Auger "design concept". Twofold benefit: > Hybrid events fewer (DC \approx 15%) but superior (better geometry, energy and mass determination) > Hybrid events calibrate SD events (DC ≈100%)

FD: $\sigma E = 8\%$, $\sigma syst = 14\%$ SD: $\sigma E = 10\%$ (at 10^{19} eV)

Spectrum of UHCR

UHECRs energy spectrum: combined Auger spectrum

The cosmic ray flux is well described by a broken power law plus smooth suppression at the highest energies.

UHECRs energy spectrum: combined Auger spectrum

[Phys. Rev. Lett 125, (2020) 121106, Phys. Rev. D 102, 062005 (2020)

UHECRs energy spectrum: astrophysical interpretation

The flux suppression may be due to the GZK effect, or to a limit of acceleration efficiency at the sources

Examples of spectrum scenarios:

Maximum acceleration efficiency Emax(A) = Z Emax(p) propagation effect GZK/disintegration

Need precise composition measurements

Are Auger and TA spectra compatible?

Spectra agree in the ankle region 10^{18.4} eV < E < 10^{19.4} eV
Difference above 10^{19.4} eV
28

Energy spectrum: Auger and TA common declination band

- Better agreement between TA and Auger in the common declination band
 - spectrum cutoff roughly in agreement
 - smaller differences remain but within systematics
- Auger and TA energy spectra consistent within systematic uncertainties

Mass compositiom of UHCR

Mass composition: average X_{max} and X_{max} -fluctuations

> X_{max} is an observable sensitive to the mass composition.

- > The rate of change of X_{max} with Energy (elongation rate) indicates changing mass composition.
- > Fluctuations of X_{max} decrease above 2*10¹⁸ eV, indicating a composition becoming heavier with increasing energy.
- The inferred mass composition relies heavily on validity of the hadronic interaction models (extrapolations of the experimental data to high energy is associated with high uncertainty).

> Composition proton-like at 10¹⁸ eV and N-like above 10¹⁹ eV

> The composition which best describes Auger data is a mix of p He and N nuclei, i.e. AugerMix

AugerMix

No model requires any significant fraction of iron at any energy.
A significant reduction in the proton fraction above 2 EeV

The intermediate masses (He, N) at all energies have a strong model dependence.
p-values indicates that the hadronic interaction models have difficulties to reproduce the details of the observed X_{max} distribution.

Sources of UHCR (next talk)

Propagation of cosmic rays in the Galaxy

Neutrino/photon production: hadronic model

- The determination of the origin of CRs is a difficult task since CRs are deflected during propagation and the extent of this angular deflection is still poorly constrained.
- > On the other hand, neutrinos propagate unaffected from their sources to us. They can deliver potentially valuable information on the sources of the most energetic CRs.

Gamma-induced shower: deeper, less muons

Gamma-induced showers:

- Larger X_{max} (deepest 1st interaction)
- Larger R_{curv}
- Less muons
- Larger spread in the signal risetime

Nuclear showers:

- Smaller X_{max}
- Smaller R_{curv}
- More muons
- Smaller spread in the signal risetime

Searches for cosmogenic photons

 $\pi^0 \rightarrow \gamma + \gamma$

- > Models of top-down production of UHECR disfavoured at almost all energies.
- > Models of cosmogenic photons assuming a pure proton composition can be tested.
- > Constraints for photon flux spectrum from the Galactic center.

Searches for cosmogenic neutrinos

Challenge: identify neutrino showers in dominant background of nucleonic showers

The discrimination power is enhanced when looking at inclined showers \rightarrow large slant depth

(1-2) Nucleonic cosmic rays initiate showers high in the atmosphere.

Shower at ground: narrow front mainly composed of muons (electromagnetic component absorbed in atmosphere)

(3-4-5) Neutrinos can initiate deep showers

Shower at ground: broad front with electromagnetic + muonic components.

Searches for cosmogenic neutrinos

Signature: inclined shower with significant electromagnetic content

Searches for cosmogenic neutrinos

$p + \gamma_{CMB} \rightarrow n + \pi^{+}$ $\pi^{+} \rightarrow e^{+} + 3\nu$

No candidates: constraints on proton-dominated astrophysical models and source evolution

> Neutrino upper flux limits start testing the cosmogenic (GZK) ultra-high energy neutrino production models.

Transient atmospheric events - Elves Solar Physics - Space Weather (see LAGO presentation by I. Torres) Atmospheric Physics

Auger prime

Open questions

- > Origin of the flux suppresion
- > Proton fraction at UHE
- > Rigidity-dependence of anisotropies
- > Hadronic physics above sqrt(S)=140 TeV

Need large-exposure detector with composition sensitivity

arXiv:1604.03637v1 [astro-ph.IM] 13 Apr 2016

The Pierre Auger Observatory Upgrade

"AugerPrime"

Preliminary Design Report

The Pierre Auger Collaboration April, 2015

Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

Detector Upgrades for AugerPrime

Auger Prime: Increased Composition Sensitivity

Complementary response

Plans

2016: Engineering Array

2018-2019: deployment of 1200 SSD

2019-2025: data taking (almost double exposure)

Goal: composition measurement at 10²⁰ eV composition-enhanced anisotropy studies

particle physics with air showers

Summary

- > Suppression of the UHECRs energy spectrum is compatible with GZKcutoff but also with efficiency limit of particle acceleration by sources (maximum rigidity scenario).
- > UHECRs appear proton-like at 10^{18} eV and heavier up to 10^{19} eV (N-like).
- > No photons and neutrinos with EeV energies detected so far exotic scenarios of the UHECRs origin disfavored.
- > Auger Prime: Increased Composition Sensitivity

