

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

LiNgPO₄:RE review of the results of 7-years investigations on new dosimetric crystals

Wojciech Gieszczyk

Radiation Physics and Dosimetry Department

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Need for dosimetric measurements:

- Personal dosimetry
- Environmental monitoring
- Medical applications
- Industrial applications
- Nuclear physics experiments

How to measure the energy delivered by ionizing radiation

OUTERSARCE

- Thermally Stimulated Luminescence (TSL, TL) still most popular
- > Optically stimulated Luminescence (OSL) becomes more widely applied measurement technique

Introduction Stimulated luminescence phenomena

wojciech.gieszczyk@ifj.edu.pl

Basic data on LMP compound

Orthophosphate of ABPO₄ formula A (Li⁺: 0.58 Å), B (Mg²+: 0.72 Å)

3D crystal structure of LiMgPO₄ prepared by Diamond 4.1 software using the data from Crystallographic Open Database (COD 1530053) View towards the <h,k,l> = <1,1,1> plane

Olivine-type structure stable over a broad temperature range

Exemplary LMP crystals placed on stainless-steel cups

Property	Value
Crystallographic system	Orthorhombic
Space group	Pnma
Unit cel parameters	a = 10.147·10 ⁻¹⁰ m
	b = 5.909·10 ⁻¹⁰ m
	c = 4.692·10 ⁻¹⁰ m
Unit cel volume	281.32·10 ⁻³⁰ m ³
Molar mass	126.225 g/mol
Density	2.98 g/cm ³
Effective atomic numer (Z _{eff})	11.5
Z _{eff Al2O3}	11.4
Z _{eff LiF}	8.2
Z _{eff BeO}	7.2
Z _{eff tissue}	7.4

W. Gieszczyk, B. Marczewska, M. Kłosowski, A. Mrozik, P. Bilski, A. Sas-Bieniarz, P. Goj, P. Stoch. Materials 12 (2019), 2861

Materials & Methods New material developed and optimized in IFJ PAN in Krakow

Samples preparation techniques (powders)

Solid-state reaction betwen:

- lithium hydroxide (LiOH)
- > hexahydrate magnesium nitrate (Mg(NO₃)₂·6H₂O)
- > ammonium dihydrogen phosphate ($NH_4H_2PO_4$)

 $2\text{LiOH} + 2\text{Mg}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O} + 2\text{NH}_4\text{H}_2\text{PO}_4 \xrightarrow{\Delta T} 2\text{LiMgPO}_4 + 2\text{NH}_3 + 4\text{NO}_2 + 16\text{H}_2\text{O} + \text{O}_2$

Followed by several annealing cycles at the temperatures ranging from 200 to 750 °C

We are probably the first research group that developed and optimized this material in the form of **melt-grown crystals**

Materials & Methods

Thermal setup elements:

Ir Crucible

Samples preparation techniques (crystals)

- Inductive furnace made by Cyberstar (France)
- Middle-frequency generator of 20 kW power
- Achievable temperatures above 2000 °C
- Two methods of crystal growth in one device (micro-pulling-down, μPD and Czochralski)

Samples preparation techniques (crystals)

Series of our LiF crystals obtained by micro-pulling-down method

Our LiF crystals obtained by Czochralski method

Materials & Methods

Samples preparation techniques (crystals)

Micro-Pulling-Down method:

- High-temperature growth (even above 2000 °C for selected materials)
- > Needs a dedicated crucible made of noble metal
- > Fast and cheap method for crystal growth for the needs of laboratory research

Materials & Methods Challenges for MPD crystal growth

Materials & Methods

Devices applied for the measurements of TL(T), OSL(t), TL(λ), CL(λ)

TL/OSL measurements

2D-TL measurements

Spectral measurements

CL measurements

Materials & Methods

Overview of crystal growth experiments

Matrix	Dopant	Doping strategy	Dopant concentration	Crucible material	Hot zone material	Protective atmosphere	Pulling rate	
LiMgPO ₄	Tb			Ir Mo C	ZrO ₂ Al ₂ O ₃	Ar 0.03 – 5 Ar/H ₂ mm/mi		
	В						0.03 – 5.0 mm/min	
	Tm	No doping	0.1 – 10 mol%					
	Eu	or Single doping or Double doping or Triple doping						
	Er							
	Y							
	Gd							
	Sm							
	Yb					I crystal/day with MPD		
1 crystal/day w 1 crystal/week	vith MPD me with Czoch	ethod ralski method						
			More than 10	<mark>0 different L</mark>	MP crystals in	vestigated with	in this work	

Short-wavelength emission is better for TL measurements

Undoped LMP crystal: Two broad emission bands: 354 and 630 nm – the emission of F⁺ and F centers

In **Tm-doped crystal** all transitions characteristic for Tm ions visible and the emission is strongly shifted towards higher temperatures

W. Gieszczyk, B. Marczewska, M. Kłosowski, A. Mrozik, P. Bilski, A. Sas-Bieniarz, P. Goj, P. Stoch. Materials 12 (2019), 2861

Short-wavelength emission is better for TL measurements

Undoped LMP crystal: Two broad emission bands: 354 and 630 nm – the emission of F⁺ and F centers

In **Tm-doped crystal** all transitions characteristic for Tm ions visible and the emission is strongly shifted towards higher temperatures

W. Gieszczyk, B. Marczewska, M. Kłosowski, A. Mrozik, P. Bilski, A. Sas-Bieniarz, P. Goj, P. Stoch. Materials 12 (2019), 2861

Short-wavelength emission is better for TL measurements

Undoped LMP crystal: Two broad emission bands: 354 and 630 nm – the emission of F⁺ and F centers

In **Tm-doped crystal** all transitions characteristic for Tm ions visible and the emission is strongly shifted towards higher temperatures

W. Gieszczyk, B. Marczewska, M. Kłosowski, A. Mrozik, P. Bilski, A. Sas-Bieniarz, P. Goj, P. Stoch. Materials 12 (2019), 2861

Results Luminescence emission vs. growth parameters

D. Kulig, W. Gieszczyk, P. Bilski, B. Marczewska, M. Kłosowski. Radiat. Meas. 90 (2016) 303 - 307

wojciech.gieszczyk@ifj.edu.pl

Results Powders vs. crystals

Do we really need crystals?

In general, we observed:

- Powders a little bit more sensitive to radiation
- Crystals exhibit lower fading
- Similar dose-response characteristics

Advantages of using crystals:

It is easier to operate with crystals ...

- High-temperature growth changes the distribution of TL-related structure defects what is manifested in the changes of the shape of the measured glow-curves
- > The effect is repeatable
- May strongly influence the fading properties

D. Kulig, W. Gieszczyk, B. Marczewska, P. Bilski, M. Kłosowski, A.L.M.C. Malthez. Radiat. Meas. 106 (2017) 94 – 99

. . .

Results Trapping parameters evaluation

- Free charge carriers can be trapped by trapping centers related to the defect sites
- Each trapping center is characterized by several different trapping parameters like e.g. I_m, T_m, E (in TL); τ, σ (in OSL)
- Knowing the values of trapping parameters we can expect a specific behavior regarding e.g. the response to increasing radiation dose or stability of luminescence in time
- Trapping parameters evaluated using different methods (deconvolution, T_m-T_{stop}, VHR)
- Individual TL components separated from the measured glow-curves
- All the components were stable for increasing dose of radiation
- Dose-response was checked for each TL component
- Activation energy evaluated with VHR method

W. Gieszczyk, D. Kulig, P. Bilski, B. Marczewska, M. Kłosowski. Radiat. Meas. 106 (2017) 100 – 106

Exemplary results (OSL):

- > The undoped LMP crystal
- CW- and LM-OSL curves analyzed

- Both TL and OSL emission does not follow the first order kinetics directly, but can be easily expressed as a linear combination of several first order components.
- > We can expect:
 - Stability for increasing dose
 - No retrapping
 - High fading because of low E

W. Gieszczyk, D. Kulig, P. Bilski, B. Marczewska, M. Kłosowski. Radiat. Meas. 106 (2017) 100 - 106

Results

Important for high-dose measurements (e.g. hadron therapy)

W. Gieszczyk, D. Kulig, P. Bilski, B. Marczewska, M. Kłosowski. Radiat. Meas. 106 (2017) 100 - 106

Results Response to charged particles

Samples under study

		Dopar	nts con					
Sample ID	Raw material	Tb	В	Eu	Er	Tm	Y	Sensitivity vs. LiF:Mg,Ti
#1	LiMgPO4	_	10	_	_	0.8	_	2.78
#2		0.2	10	_	_	0.6	_	0.56
#3		0.4	10	_	0.4	_	_	0.05
#4		0.2	10	_	_	_	0.6	0.05
#5		0.4	10	0.4	_	_	_	< 0.01
Reference	LiF:Mg,Ti, MTS-N	-	_	-	_	-	-	1.0

W. Gieszczyk, P. Bilski, M. Kłosowski, T. Nowak, L. Malinowski, Radiat. Meas. 113 (2018) 14 - 19

Results Response to charged particles

Practically the same shape of glow-curves regardless the radiation type

Perfect linear response regardless the proton beam energy

W. Gieszczyk, P. Bilski, M. Kłosowski, T. Nowak, L. Malinowski, Radiat. Meas. 113 (2018) 14 - 19

For α -particles the response is also perfectly linear

W. Gieszczyk, P. Bilski, M. Kłosowski, T. Nowak, L. Malinowski, Radiat. Meas. 113 (2018) 14 – 19

Probable explanation

LiF detectors response saturates typically at around 10³ Gy, but ...

W. Gieszczyk, P. Bilski, M. Kłosowski, T. Nowak, L. Malinowski, Radiat. Meas. 113 (2018) 14 – 19

Results Response to charged particles

... a high-temperature structure of LiF:Mg,Cu,P (MCP) glow-curve has been discovered

LiF main peak response is far saturated at this dose level while for the LMP no saturation observed at least to 10 kGy!!! Around 20% of the entire energy of alpha particle is deposited with local doses > 50kGy

P. Olko, P. Bilski, W. Gieszczyk, L. Grzanka, B. Obryk. Radiat. Meas. 46 (2011) 1349 - 1352

Results Response to charged particles

P. Olko, P. Bilski, W. Gieszczyk, L. Grzanka, B. Obryk. Radiat. Meas. 46 (2011) 1349 - 1352

Results for differently doped LMP crystals

- ²³⁹Pu/Be source moderated with 10 cm polyethylene;
- Neutron fluence rate: 1.42·10⁴ n/h·cm² (evaluated with ⁶LiF:Mg,Ti calibrated at PTB Geesthacht Neutron Facility);
- > Gamma-ray background: 5.9 μ Gy/h (measured with ⁷LiF:Mg,Cu,P);
- Gamma dose subtracted from the total response of LMP crystals;
- Irradiation time: 5d 18h 10 m (corresponds to the fluence of 1.96·10⁶ n/cm²)
- Data corrected for the fading factor evaluated for the Co-60 gamma rays for the same irradiation time
- Samples were shielded from a daylight during the irradiation and transportation

Sample ID	Raw material	Dopants concentration (%mol)			Sensitivity ^a	Response to thermal	Relative TL efficiency ^b						
		Tb	В	Eu	Er	Tm	Y	vs. LiF:Mg,7	i neutrons [mGycm ² /n] ^b	55 MeV p	20 MeV p	13.9 MeV p	$3.09 \text{MeV} \alpha$
#1 #2 #3 #4 #5 Reference	LiMgPO4 LiF:Mg,Ti, MTS-N	- 0.2 0.4 0.2 0.4 -	10 10 10 10 10	- - - 0.4	- 0.4 -	0.8 0.6 - - -	- - 0.6 -	$\begin{array}{c} 2.78 \\ 0.56 \\ 0.05 \\ 0.05 \\ < 0.01 \\ 1.0 \end{array}$	$3.82 \cdot 10^{-6}$ $3.52 \cdot 10^{-6}$ $4.19 \cdot 10^{-6}$ $5.11 \cdot 10^{-6}$ - $3.50 \cdot 10^{-6}$	$\begin{array}{r} 0.33 \ \pm \ 0.03 \\ 0.44 \ \pm \ 0.08 \\ 0.42 \ \pm \ 0.05 \\ 0.34 \ \pm \ 0.03 \\ 0.56 \ \pm \ 0.04 \\ 0.95 \ \pm \ 0.05 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} 0.18 \ \pm \ 0.04 \\ 0.30 \ \pm \ 0.02 \\ 0.26 \ \pm \ 0.05 \\ 0.16 \ \pm \ 0.03 \\ 0.46 \ \pm \ 0.04 \\ 0.82 \ \pm \ 0.02 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

W. Gieszczyk, P. Bilski, M. Kłosowski, T. Nowak, L. Malinowski, Radiat. Meas. 113 (2018) 14 - 19

Response to thermal

The response of LM	neutrons [mGycm ² /n] ^b			
In both c	$3.82 \cdot 10^{-6}$ $3.52 \cdot 10^{-6}$	LMP		
	LiF	LiMgPO ₄	$4.19 \cdot 10^{-6}$ 5.11 \cdot 10^{-6}	
Molar ratio	1:1	1:6	- 3.50·10 ⁻⁶	LiF

≻ The content of Li in LiF is much higher than in LiMgPO₄

- > The main product of the interaction of neutrons with Li is alpha particle Li $(n,\alpha)^{3}$ H
- > Response of LMP to alpha particles is higher than the response of LiF
- > These two effects compensate each other resulting in a similar efficiency to thermal neutrons

W. Gieszczyk, P. Bilski, M. Kłosowski, T. Nowak, L. Malinowski, Radiat. Meas. 113 (2018) 14 – 19

Results Novel applications

- High-dose dosimetry, kGy range (food preservation, sterilization)
- Dosimetry of charged particles (hadron therapy)
- > Dosimetry of neutrons (monitoring of areas around particle accelerators)

- Real-time measurements of therapeutic proton beam (prof. B. Marczewska)
- > 2D/3D OSL dosimetric system based on LMP foils (dr. M. Sądel)

Concept:

- Small detector (crystal) placed at the end of optical fiber
- > The optical fiber can be even several dozen meters long
- > The optical fiber connects the crystal to the apparatus for stimulation and signal registration
- Different modes of measurements are possible

Novel applications

- > Simultaneous or sequential registration of RL and OSL signal
- Constant or pulsed stimulation

Detector:

- Sample of the volume of 1-3mm³ (spatial resolution)
- \blacktriangleright LiMgPO₄ crystals
- in-vivo, in-situ, in real-time

A. Sas-Bieniarz, B. Marczewska, P. Bilski, W. Gieszczyk, M. Kłosowski. Radiat. Meas. 136 (2020), 106408

range of dose-rates (performed with Cs-137 and Co-60 sources)

A. Sas-Bieniarz, B. Marczewska, P. Bilski, W. Gieszczyk, M. Kłosowski. Radiat. Meas. 136 (2020), 106408

Novel applications

2D OSL dosimetric system based on LiMgPO₄ silicone foils (Foundation for Polish Science, Homing Program – P.M. dr. Michał Sądel)

Prototype foils preparation

Silico 2D LMP foils

- ✓ Thickness: ~0.5 mm
- ✓ Foils size: up to ø25 mm
- ✓ Waterproof
- ✓ Hyperelastic
- ✓ No denisity changes

Optical imaging system

4 Fast 2D/3D data acquisition

Novel applications

2D OSL dosimetric system based on LiMgPO₄ silicone foils (Foundation for Polish Science, Homing Program – P.M. dr. Michał Sądel)

Verification of a real 3D eye-ball clinical

treatment plan

Experimental setup

Proton beam;

- Protons: 60 MeV
- Range: 29 mm
- Modulation: 10 mm

Measured (40 LMP) Measured Longitudinal cross-section

Calculated (TPS)

Conclusions

New high-sensitive luminescent material has been developed an LMP sensitivity comparable or higher than LiF

- Since 2014, more than 100 different compositions of LiMgPO₄.RL composition (in TL) and Al₂O₃ (in OSL)
- > TL, OSL, RL, CL emissions have been studied for differently doped crystals
- > Y, Sm, Eu, Gd, Tb, Er, Tm, Yb were investigated as possible dopants influencing efficiency of LMP crystals

Investigations performed within this work

LMP crystal growth parameters optimized (crystals better than powders)

- Growth conditions have been optimized and their influence on crystal sensitivity has been checked
- Comparison between powders and crystals was performed showing a superiority of crystals
- > Trapping parameters have been evaluated for selected LMP crystals
- Basic luminescence and dosimetric properties were studied:
 - > Sensitivity to ionizing radiation against LiF detectors
 - Dose-response characteristics
 - Response to charged particles
 - Response to thermal neutrons

Novel applications presented

Applications to real-time measurements and 2D dose distribution assess

Tb dopant is best for OSL measurements Tm dopant is best for TL and RL measurements

Eu-doped crystal showed highest relative efficiency for alpha-particles \rightarrow best for HCP measurements

All investigated compositions showed linear response up to at least 1 kGy

General comment

The obtained results clearly indicate that the LMP compound may be considered as promising material for dosimetric application

Published papers on LMP

D. Kulig (Wróbel), W. Gieszczyk[⊠], P. Bilski, B. Marczewska, M. Kłosowski.

Thermoluminescence and optically stimulated luminescence studies on LiMgPO₄ crystallized by micro pulling down technique. Radiation Measurements 85 (2016), 88-92

D. Kulig (Wróbel), W. Gieszczyk^{III}, P. Bilski, B. Marczewska, M. Kłosowski. New OSL detectors based on LiMgPO₄ crystals grown by micro pulling down method. Dosimetric properties vs. growth parameters. Radiation Measurements 90 (2016), 303-307

D. Kulig (Wróbel), **W. Gieszczyk**[⊠], B. Marczewska, P. Bilski, M. Kłosowski, A.L.M.C. Malthez. *Comparative studies on OSL properties of LiMgPO*₄:*Tb*,*B powders and crystals*. **Radiation Measurements 106 (2017), 94-99**

W. Gieszczyk[⊠], D. Kulig (Wróbel), P. Bilski, B. Marczewska, M. Kłosowski. *Analysis of TL and OSL kinetics in lithium magnesium phosphate crystals*. **Radiation Measurements 106 (2017), 100-106**

W. Gieszczyk^{\square}, P. Bilski, M. Kłosowski, T. Nowak, L. Malinowski. *Thermoluminescent response of differently doped lithium magnesium phosphate (LiMgPO*₄, LMP) crystals to protons, neutrons and alpha particles. **Radiation Measurements 113 (2018), 14-19**

A.L.M.C. Malthez, B, Marczewska, D. Kulig, P. Bilski, M. Kłosowski. Optical and thermal pre-readout treatments to reduce the influence of fading on LiMgPO4 OSL measurements. **Applied Radiation and Isotopes 136 (2018), 118–120**

W. Gieszczyk^{\boxtimes}, B. Marczewska, M. Kłosowski, A. Mrozik, P. Bilski, A. Sas-Bieniarz, P. Goj, P. Stoch. *Thermoluminescence enhancement of LiMgPO*₄ *crystal host by Tb*³⁺ *and Tm*³⁺ *trivalent rare-earth ions co-doping*. **Materials 12 (2019), 2861**

B. Marczewska[⊠], A. Sas-Bieniarz, P. Bilski, **W. Gieszczyk**, M. Kłosowski, M. Sądel. *OSL and RL of LiMgPO*₄ *crystals doped with rare earth elements*. **Radiation Measurements 129 (2019), 106205**

A. Sas-Bieniarz, B. Marczewska^{\square}, P. Bilski, **W. Gieszczyk**, M. Kłosowski. Study of radioluminescence in LiMgPO₄ doped with Tb, B and Tm. **Radiation Measurements 136 (2020), 106408**

A. Sas-Bieniarz, B. Marczewska, M. Kłosowski, P. Bilski, W. Gieszczyk[⊠].

TL, OSL and RL emission spectra of RE-doped LiMgPO₄ crystals. Journal of Luminescence 218 (2020), 116839

W. Gieszczyk[⊠], P. Bilski, A. Mrozik, M. Kłosowski, B. Marczewska, A. Sas-Bieniarz, M. Perzanowski, T. Zorenko and Yu. Zorenko. *Intrinsic and dopant-related luminescence of undoped and Tb plus Tm double-doped lithium magnesium phosphate (LiMgPO*₄, *LMP) crystals*. **Materials 13 (2020), 2032**

Marczewska[⊠], B., **Gieszczyk, W.**, Kłosowski, M., Książek, M., Bilski, P., Boroń, Ł.

Uniformity of thermoluminescence and optically stimulated Luminescence signals over the length of doped LiMgPO₄ crystal rods grown by micro-pulling-down method. Materials 14 (2021), 132

Acknowledgements:

To colleagues from the Institute of Nuclear Physics in Kraków:

- Paweł Bilski
- Mariusz Kłosowski
- Dagmara Kulig
- Leszek Malinowski
- Barbara Marczewska
- Anna Mrozik
- Fomasz Nowak
- Marcin Perzanowski
- Anna Sas-Bieniarz
- Michał Sądel

To colleagues from the Institute of Physics Kazimierz Wielki University in Bydgoszcz:

- > Yuriy Zorenko
- Fetiana Zorenko

To colleagues from the AGH University of Science and Technology in Kraków

- Paweł Goj
- Paweł Stoch

To the polish institutions supporting our research

Ministry of Science and Higher Education

Republic of Poland

Thank you very much for your attention!!! ③