

A New Measurement of the Muon Anomalous Magnetic Moment to 0.43 ppm

> Hogan Nguyen Fermilab

Seminar Institute of Nuclear Physics PAN, Krakow, Poland October 7th, 2021

Charged particles with spin have a magnetic moment.

$$\boldsymbol{\mu} = g_{\mu} \frac{e}{2m_{\mu}} \boldsymbol{S}$$

 g_{μ} = gyromagnetic ratio

A triumph of the Dirac Equation and Quantum Electrodynamics (QED)

Lowest Order QED Predicts $g_{\mu} = 2$

However, Quantum Corrections predicts $g_{\mu} \neq 2$

The anomalous portion is called a_{μ}

$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

Schwinger was the first to calculate the 1-loop QED correction.

a_{μ} probes TeV scale physics via quantum corrections !

Gi W 20 m Zan WZ G Y μ/mons Z_{0 f} νμ

4

History of Theory and Measurements

Plot by D. Hertzog

- Boston
- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Northern Illinois
- Regis
- Virginia
- Washington

USA National Labs

- Argonne
- Brookhaven
- Fermilab

experimentalists accelerator physicists ... and theorists

Muon g-2

>200 collaborators

35 Institutions

7 countries

China

Shanghai Jiao Tong

Germany

- Dresden
- Mainz

Italy

- Frascati
- Molise
- Naples
- Pisa
- Roma Tor Vergata
- Trieste
- Je Udine

Korea

- CAPP/IBS
- KAIST

Russia

- Budker/Novosibirsk
- JINR Dubna

United Kingdom

- Lancaster/Cockcroft
- Liverpool
- Manchester
- University College London

g-2 Apparatus Moved From BNL to Fermilab

$$a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11} \quad (0.46\,\text{ppm})$$

We agree with BNL !

Made Quite a Splash!

On April 7, 2021

Luke Skywalker approves...

Ma Evi

Mark Hamill 🤣 @HamillHimself · Apr 7

Evidence is mounting that The Force has been with us... ALWAYS.

🔞 The New York Times 🔮 @nytimes · Apr 7

Breaking News: Evidence is mounting that a tiny subatomic particle is being influenced by forms of matter and energy that are not yet known to science but which may nevertheless affect the nature and evolution of the universe. nyti.ms/3uzXOCb

Q	1.3K	t,	13.2K	\bigcirc	92.7K	ſ

CORONAVIRUS THE SCIENCES MIND HEALTH TECH SUSTAINABILITY VIDEO PODCASTS OPINION PUBLICATIONS

PHYSICS

Long-Awaited Muon Measurement Boosts Evidence for New Physics

Initial data from the Muon g-2 experiment have excited particle physicists searching for undiscovered subatomic particles and forces

By Daniel Garisto on April 7, 20

ফার্মিল্যাব-এর সেই মিউয়ন জি মাইনাস ২ রিং। যেখানে চেনা কণার অদ্রত আচরণ ধরা পডেছে। ছবি সৌজন্যে- ফার্মিল্যাব।

10

Why all the excitement?

BNL and FNAL agree: results are less likely to be a fluke

The Standard Model prediction is extremely solid (more later)

We can talk seriously about new physics

The Theory

To fully appreciate the implications of a_{μ}

I must review (or introduce) some concepts in Quantum Field Theory

e.g. See Peskin & Schroeder: Introduction to QFT

 $M \sim \bar{u}_{\mu} [e \gamma_{\alpha}] u_{\mu} A^{\alpha}(q)$

Nonrelativistic QM

Lowest Order

Quantum Field Theory Language and Dirac Spinors

 γ_{α} connects $u_L \rightarrow \overline{u_L}$ and $u_R \rightarrow \overline{u_R}$

Basic property of Dirac Gamma Matrices and Spinors

"It does not flip chirality"

 $\sigma_{lphaeta}$ flips Chirality It connects $u_L o \overline{u_R}$ and $u_R o \overline{u_L}$

General Statements

Diagrams contributing to a_{μ} are

Loop-induced CP Conserving Flavor Conserving Example: Dark Photon

and

Flips Chirality

The Higgs coupling to fermions flips chirality !

(One power of m_{μ} for C-flip, another for the loop integral. Mass Scale for NP in the denominator)

General Statements

Diagrams contributing to a_{μ} are

Loop-induced CP Conserving Flavor Conserving

and

Flips Chirality

The Higgs coupling to fermions flips chirality !

Example: Lepto Quark

$$\Delta a_{\mu} \sim rac{m_{\mu}m_{t}}{M_{LQ}^{2}}$$
 (LQ couplings)

(One power of m_{μ} for the loop integral. One power of m_t for the C-flip, LQ couplings, Mass Scale for LQ in the denominator)

The Standard Model Prediction

g-2 Theory Initiative to arrive at consensus SM prediction

White Paper (WP) released in 2020

QED: Largest Size but smallest error

EW: Small contribution, but is a benchmark for sensitivity to higher mass scales

WP20 g-2 Theory Initiative

$$a_{\mu} = a_{\mu}(\text{QED}) + a_{\mu}(\text{Weak}) + a_{\mu}(\text{Hadronic})$$

Hadronic Vacuum Polarization

Hadronic Light-by-Light

These two terms receive most of the attention.

WP20 uses primarily data-driven dispersive results

Some Context

The BMW20 Result is the first Lattice QCD HVP result with sub % accuracy. The result is in tension with the traditional dispersive method using data. On its own, BMW20 result implies much less room for new physics.

Combining the BMW20 result is currently not straight forward. (More discussion at the end)

We will continue to use the recommended Theory Initiative value, which currently does not include BMW20

The Experiment

and

the Storage Ring Technique

Muons: A Great Tool for Experimentalists

Can be produced copiously in proton collisions and pion decays

Can select momentum and polarization

Lucky Combination of lifetime, mass, and charge

Decays are very simple

Self-Analyzing Weak Decay

We use a precision magnetic field to continuously probe the muon spin for at least 10 lifetimes.

Clean Source of Intense and >90% Polarized 3.1 GeV Muons

Tight FODO spacing (w.r.t. BNL)

Long Decay Line

Kicker for Proton removal

24

Beam Time Structure

16 fills every 1.4 seconds

- ~ 10,000 muons per fill
- ~ 700 μsec fill duration (~ 10 muon lifetimes)

Superconducting Inflector

Beam Storage Components

8 Quads for vertical focusing (43% Coverage)

10 mrad Magnetic Kicker

Positron Detectors

1/12 of the ring

Particle Detectors

24 stations of PbFI2 Xtals

2 in-vacuum non-destructive positron tracking stations

destructive fiber beam profile monitors and beam-entrance detectors

Spin and Momentum Precession in a Storage Ring

Amazing Property shown by the Bargmann-Michel-Telegdi Equation (1954)

The difference frequency is

$$\omega_s - \omega_c \equiv \omega_a$$

Rate of change of longitudinal polarization

True for any momentum (i.e. Any Ring Size) Can be done on a table top !

Spin and Momentum Precession in a Storage Ring

for an ideal planar circular orbit in a pure B field, there is an amazing simplification:

$$\boldsymbol{\omega}_{\boldsymbol{s}} - \boldsymbol{\omega}_{\boldsymbol{c}} = \boldsymbol{\omega}_{\boldsymbol{a}} = -\frac{q}{m_{\mu}} \left(\boldsymbol{a}_{\boldsymbol{\mu}} \boldsymbol{B} \right)$$

"All" we have to do is measure ω_a and B

Measure the magnetic field B

Measure ω_a (the rate of change of longitudinal polarization) and correct for the non-ideal case

Measuring Muon Longitudinal Polarization

Tagging high energy positrons

Main Analysis Plot

Number of Positrons Above 1.7 GeV versus Time in Fill

The frequency is ω_a

Actually: Spin and Momentum Precession in Electric and Magnetic Field are very complicated

$$\frac{d\boldsymbol{\beta}}{dt} = \frac{e}{\gamma m} \left(\boldsymbol{E} + \boldsymbol{\beta} \ \boldsymbol{x} \ \boldsymbol{B} - \boldsymbol{\beta} (\boldsymbol{\beta} \cdot \boldsymbol{E}) \right)$$
$$\frac{d}{dt} \left(\widehat{\boldsymbol{\beta}} \cdot \boldsymbol{s} \right) = -\frac{e}{mc} \boldsymbol{s}_{\perp} \cdot \left[a_{\mu} \widehat{\boldsymbol{\beta}} \ \boldsymbol{x} \ \boldsymbol{B} + \left(\frac{g\beta}{2} - \frac{1}{\beta} \right) \boldsymbol{E} \right]$$
$$Use "Magic"Momentum Muons Electric FieldPerturbation$$

(3.1 GeV/c)

Our

The Magic Momentum Technique

Can use Electrostatic Quadrupoles with only a small penalty

Vertical Focusing

Horizontal Defocusing

The Magnet

and

Measuring the Magnetic Field
Gordon Danby's (BNL) Ingenious Magnet Design

Super Conducting Technology allowed for low heat load

6 Mega Joules of stored EM Energy

Built by BNL in the mid 1990's

A 600T Precision Swiss Watch

~10000 Adjustment Knobs

Dipole

Magnet Current
24 Outer Shim Plates
~8500 Thin shim foils

Quadrupole 864 Wedge Shims

Sextupole 144 Edge Shims

Radial Field ~20 Trim Coils

Measuring the Field with Proton NMR

$$a_{\mu} = \frac{\omega_a}{B} \frac{m_{\mu}}{e}$$

For protons at rest in the magnetic field, their spin also precesses:

$$\omega_p = \frac{g_p e}{2m_p} B$$

(Larmor Frequency)

Measure the proton Larmor Frequency and extract B using external constants $\frac{g_p e}{2m_p}$

Measuring the Field with Proton NMR

$$a_{\mu} = \frac{\omega_a}{B} \frac{m_{\mu}}{e} = \frac{\omega_a}{\widetilde{\omega}'_p(T_r)} \frac{\mu'_p(T_r)}{\mu_e(T_r)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

Actually, we take external constants from:

H-maser, Muonium HFS, and Penning Trap experiments, and QED Theory.

Known to ~ 24 ppb

Pulsed NMR

O(1 msec) Bandwidth O(10 Hz) Sampling Rate

Easily achieve ppb precision in a high field

Typical "Proton Precession" Signal in Water

NMR Probes

"Fixed" NMR probes (monitors B during muon storage)

"Trolley" measures 2D profile (must turn OFF beam)

Main Worries

What is the Field in between trolley runs ? *magnet stability*

How do we know ω_p is correct ? Absolute Calibration Procedure

Magnetic Transients caused by pulsed kicker and quads

Typical Magnet Stability

Order Few ppm drift over 3 days

Related to hall temperature stability

(No longer a problem)

Main Worries: Early-to-late Effects

Detector Gain Stability

Pileup Background to e^+

Phase Population changes

Beam Motion (since it couples to detector acceptance)

, Really an ensemble

46

Gain Stability: Mapped with Laser System

Gain Drop from initial beam flash at injection

Gain Drop from consecutive hits

Master Formula

Important Facts about Beam Motion

Ideal Injection and Kick

- ~200 Gauss Kick
- ~ 5000 Amps
- ~ 200 nsec pulse

Kick not strong enough

~200 Gauss Kick

Quads decreases Horizontal Betatron tune

 $v_x < 1$

Horizontal Coherent Betatron Motion (due to $v_x < 1$)

View seen by a the trackers

(similar effect in vertical direction)

5 parameter fit residuals poor due to Beam motion

Finite Calorimeter Acceptance Vacuum chamber Decay electro Muon storage orbi Decay electron Traceback chambers Calorimeter active volume Calorimeter active volume

Since calorimeter size is finite, we are sensitive to decay vertex position

"Wiggle" Phase and Asymmetry has a 2D dependence

The ω_a plot is the ensemble average. The beam profile must be well-understood during measurement period.

2 damaged Quad Resistors caused Beam Instability in Fill

HV's from measured plates (13.1/18.3kV)

Two (out of 32) Quad Electrode Voltages rose too slowly "Phase Acceptance" Correction took 1 year to pin down.

Run 1 Datasets

Dataset	Quad field index	Kicker [kV]	Number of Positrons
la	0.108	130	0.9B
1b	0.120	137	1.3B
lc	0.120	132	2.0B
1d	0.108	125	4.0B

Total statistics =8.2B e⁺ ~ 1.2x BNL

Run 1 collected in spring 2018. 4 datasets based on the quadrupole and kicker voltages

22 Parameter Fit

 $N_0 e^{-\frac{t}{\gamma \tau}} \left(1 + A \cdot A_{BO}(t) \cos(\omega_a t + \phi \cdot \phi_{BO}(t))\right) \cdot N_{CBO}(t) \cdot N_{VW}(t) \cdot N_y(t) \cdot N_{2CBO}(t) \cdot J(t)$ $A_{\rm BO}(t) = 1 + A_A \cos(\omega_{\rm CBO}(t) + \phi_A) e^{-\frac{t}{\tau_{\rm CBO}}}$ $\phi_{\rm BO}(t) = 1 + A_{\phi} \cos(\omega_{\rm CBO}(t) + \phi_{\phi}) e^{-\frac{t}{\tau_{\rm CBO}}}$ $N_{\rm CBO}(t) = 1 + A_{\rm CBO}\cos(\omega_{\rm CBO}(t) + \phi_{\rm CBO})e^{-\frac{t}{\tau_{\rm CBO}}}$ $N_{2\text{CBO}}(t) = 1 + A_{2\text{CBO}}\cos(2\omega_{\text{CBO}}(t) + \phi_{2\text{CBO}})e^{-\frac{t}{2\tau_{\text{CBO}}}}$ $N_{\rm VW}(t) = 1 + A_{\rm VW} \cos(\omega_{\rm VW}(t)t + \phi_{\rm VW}) e^{-\frac{t}{\tau_{\rm VW}}}$ $N_{y}(t) = 1 + A_{y}\cos(\omega_{y}(t)t + \phi_{y})e^{-\frac{t}{\tau_{y}}}$ $J(t) = 1 - \frac{k_{LM}}{\int_{t}^{t} \Lambda(t) dt}$ $\omega_{\rm CBO}(t) = \omega_0 t + A e^{-\frac{t}{\tau_A}} + B e^{-\frac{t}{\tau_B}}$ $\omega_{y}(t) = F \omega_{\text{CBO}(t)} \sqrt{2\omega_{c}/F} \omega_{\text{CBO}}(t) - 1$ $\omega_{\rm VW}(t) = \omega_c - 2\omega_u(t)$

Final Result from a 22 parameter fit (dataset 1d)

Uncertainties

Quantity	Correction Terms	Uncertainty
	(ppb)	(ppb)
ω_a (statistical)	-	434
ω_a (systematic)		56
C_e	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{calib}\langle \omega'_p(x,y,\phi) \times M(x,y,\phi) \rangle$	_	56
B_q	-17	92
B_k	-27	37
$\mu_{p}'(34.7^{\circ})/\mu_{e}$	-	10
m_{μ}/m_e	-	22
$g_e/2$	3/55	0
Total		462

434 ppb statistical

 \oplus

157 ppb systematic

Multiple Independent Analyses

- 6 extractions of ω_a emphasizing different systematics
- 2 independent reconstructions
- 3 e⁺ pileup algorithms
- 3 spin/momentum simulations
- 2 FEA of quad field

2 Momentum distribution extraction methods 2 B-field tracking algorithms

2 proton precession waveform fitters

2 absolute field calibrations

2 kicker transient measurements

The Future

- RUN1 is only 6% of the final dataset ... with 4 configurations.
- Recently surpassed 10 BNL data sets.
- Runs 2, 3 has ~1 datataking configuration with higher kick setting
- Run 4 (now) has the best kicker setting (met TDR) !

In Conclusion:

$a_{\mu}(\text{FNAL}) = 116592040(54) \times 10^{-11} \quad (0.46 \text{ ppm})$

Constraints on new physics scenarios

Implications for New Physics Landscape

Figure of Merit: $a_{\mu 2020} - a_{\mu SM} \sim 1.7 a_{\mu Weak}$

Wide variety of models with 1, 2, or 3 field extensions.

Few survive the combined constraints from the LHC and DM searches, and a_{μ} . They predict too small a_{μ} .

Notable models that are still viable: 2 Higgs Doublet, Scalar Lepto-Quark, general MSSM models.

See https://arxiv.org/pdf/2104.03691.pdf. Athron, et. al.

Ideas for Resolving: $a_{\mu 2020} - a_{\mu SM}$

Higgs $\rightarrow \mu^+\mu^-$ measurement at the LHC or future lepton colliders would be very interesting since chirality flipping enhancements is related to the mass mechanism.

Higgsino, Winos, and neutralino correction to the muon mass

Open Questions with the SM prediction

BMW lattice calculation is in tension with traditional data-driven Dispersive technique.

The dispersive technique has been studied for decades. Uncertainties are agreed to be experimental.

(Is there new physics in this difference ?)

There are other ideas: MuonE

We await the next word from the theory community.

Dispersive Technique

Dispersion Relation + Analyticity + Optical Theorem + Data from e^+e^- and $\tau \rightarrow hadrons$

$$\boxed{a_{\mu}^{\rm had,LO} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\rm th}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\rm had}(s)}$$

BMW20

First sub% ab-initio Lattice QCD calculation

"One piece of a_{μ} " does not agree with other lattice calculations.

"Other pieces" to be compared

Implies larger discrepancy of hadronic cross section at low E

Other New Approaches

MUonE Proposal (CERN)

 $\mu^+e^- \rightarrow \mu^+e^-$ elastic scattering of 150 GeV muons in the Feynman x range = 0 - 0.93

$$a_{\mu}^{\mathrm{HLO}} = rac{lpha}{\pi} \int_{0}^{1} dx \left(1 - x\right) \Delta lpha_{\mathrm{had}}[t(x)]$$

 $\Delta \alpha_{had}(t(x))$ from $\mu^+ e^- \rightarrow \mu^+ e^-$ elastic scattering

$$t(x) = \frac{xm_{\mu}^{2}}{x-1} < 0$$

x = Feynman x

Hadronic vacuum polarization

 $\hat{\Pi}(q^2)$

Leading order HVP correction: $a_{\mu}^{\text{HVP,LO}} = \left(\frac{\alpha}{\pi}\right)^2 \int dq^2 \omega(q^2) \,\hat{\Pi}(q^2)$

• Can rewrite the integral in terms of the hadronic e^+e^- cross section:

Hadronic vacuum polarization

 $\hat{\Pi}(q^2)$

Leading order HVP correction: $a_{\mu}^{\text{HVP,LO}} = \left(\frac{\alpha}{\pi}\right)^2 \int dq^2 \omega(q^2) \,\hat{\Pi}(q^2)$

• Calculate $a_{\mu}^{\text{HVP,LO}}$ in Lattice QCD Compute correlation function: $C(t) = \frac{1}{3} \sum_{i,x} \langle j_i(x,t) j_i(0,0) \rangle$

Obtain $a_{\mu}^{\text{HVP,LO}}$ from an integral over Euclidean time:

$$a_{\mu}^{\mathrm{HVP,LO}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dt \, \tilde{w}(t) \, C(t)$$

Back up
From BMW20 (archive version)

"1 particle Irreducible diagrams"

$$\mu \underbrace{1\text{PI}}_{q} \nu \equiv i \Pi^{\mu\nu}(q),$$

See e.g. Peskin/Schroeder Chapter 7

a² (fm²)

Thomas Teubner

Lattice HVP: Latti

$$a_{\mu}^{\rm HVP,LO} = \left(\frac{\alpha}{\pi}\right)^2 \, \int_0^\infty dt \, \tilde{w}(t) \, C(t)$$

• Use windows in Euclidean time to consider the different time

7 Fermilab

Lattice HVP: Attices HVP: Crossin Cloecks ethod (II)

H. Wittig @ Lattice HVP workshop

$$a_{\mu} = a_{\mu}^{\mathrm{SD}} + a_{\mu}^{\mathrm{W}} + a_{\mu}^{\mathrm{LD}}$$

 $t_0 = 0.4 \text{ fm}, t_1 = 1.0 \text{ fm}$ $\Delta = 0.15 \text{ fm}$

- Straightforward reference quantities
- Can be applied to individual contributions (light, strange, charm, disconnected,...)
- Large discrepancies^P between different results, also with data-driven: BMW vs KNT: 3.7σ
- Individual results must sum up, and different groups & discretisations must agree Thomas Teubner (universality)

milab

Comparisons

We essentially used the BNL magic momentum storage ring technique. But newer technology allowed us to scrutinize further and discovered new effects. We dedicated more time for special runs.

Jparc g-2 uses a low energy storage ring technique (no quads, no kickers, no inflector). But there are trade offs with rate and material and beam emittance.

Determining Momentum Distribution by Observing Beam Debunching

Lower momentum muons have shorter cyclotron period

Higher momentum muons have *longer* cyclotron period

We can extract the rotation period distribution.

Fast Modulation is from the ~ 150 nsec cyclotron period

Deviation from central orbit

Determining Momentum Distribution by Observing Beam Debunching

Equilibrium Radius [mm]

B-field Transients from Kickers and Quads

Large Currents Required to Kick the Muons

Reaction Eddy Currents and Impedance mismatch currents

Mechanical Motion due to Lorentz Forces

3 cm

Mechanical Motion due brief impulse of Electrostatic forces.

Vibration of metals in a magnetic field

Faraday Magnetometer

Kicker Transient Measurements

Extremely difficult measurement requiring several groups over 3 years during beam-off period to accomplish.

B-field Transients from Quads

This was a surprise and a worry

Corresponded to mechanical vibrations of the Quad plates caused by electrostatic impulses

Accelerometers Mirrors for Reflectometer **Special NMR Probes**

Required 1 year of study using specialty NMR probes and mechanical measurements

B-field Transients from the Quad System

Acknowledgements

Department of Energy (USA),

National Science Foundation (USA),

Istituto Nazionale di Fisica Nucleare (Italy),

Science and Technology Facilities Council (UK),

Royal Society (UK),

European Union's Horizon 2020

National Natural Science Foundation of China,

MSIP, NRF and IBS-R017-D1 (Republic of Korea),

German Research Foundation (DFG)

Chirality Connection

$$\bar{\mu}\gamma^{\alpha}\mu = \bar{\mu}_L \gamma^{\alpha} \mu_L + \bar{\mu}_R \gamma^{\alpha} \mu_R$$

g = 2 part connects same chirality states

$$\bar{\mu}\sigma^{\alpha\beta}\mu = \bar{\mu}_L \ \sigma^{\alpha\beta} \ \mu_R + \bar{\mu}_R \ \sigma^{\alpha\beta} \ \mu_L$$

 a_{μ} part connects opposite chirality states

 $\overline{\mu} m \mu = \overline{\mu}_L m \mu_R + \overline{\mu}_R m \mu_L$

mass terms connects opposite chirality states

$$R_{\mu} = \left(\frac{f_{clock} \cdot \omega_a^{meas} \cdot (1 + C_e + C_p + C_{ml} + C_{pa})}{f_{calib} \cdot \omega_p'(x, y, \phi) \otimes M(x, y, \phi) \cdot (1 + B_k + B_q)}\right)$$

Fit Stability

87