CP symmetry measurement in neutrino oscillations in the T2K experiment

Marcela Batkiewicz-Kwaśniak IFJ PAN

IFJ PAN Seminar May 27, 2021

Overview

- Introduction
- Matter-antimatter imbalance
- Neutrino mixing and oscillations
- T2K experiment overview
- Analysis strategy
- T2K future
- IFJ involvement
- Summary

Introduction

- T2K (Tokai to Kamioka) experiment
 - long-baseline neutrino oscillation experiment
 - conducted in Japan by an international collaboration
 - recently provided the first constraint on δ_{CP} phase
 parameter describing the charge-space (CP) symmetry conservation/violation

Matter-antimatter imbalance in the Universe

- The Universe is dominated by matter
- Sakharov conditions to explain matter-antimatter imbalance:
 - violation of C and CP symmetries
 - non-conservation of barion number B
 - interactions out of thermal equilibrium
- C violated observed in weak interaction
- CP violation in quark sector to small
- CP violation in lepton sector not conclusively observed so far
- Proton decay (B violation) searches ongoing

Neutrino mixing

$$U = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{array}\right) \left(\begin{array}{cccc} c_{13} & 0 & s_{13}c \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{array}\right) \left(\begin{array}{cccc} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array}\right)$$
atmosferic neutrino oscillation

solar neutrino oscillation

where
$$c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}$$
 and $\delta = \delta_{CP}$.

27.05.2021

IFJ PAN seminar, CP measurement in T2K

Neutrino oscillations

© https://demonstrations.wolfram.com/NeutrinoOscillations/

 $J_{\rm CP} = \frac{1}{8}\cos\theta_{13}\sin(2\theta_{12})\sin(2\theta_{23})\sin(2\theta_{13})\sin\delta_{\rm CP} = 0.033\sin\delta_{\rm CP}$

3000

4000

日

Oscillation probabilities with CP violating term, but without matter effect, where:

- E neutrino energy
- L travelled distance
- J_{CP} Jarlskog invariant

for quarks
$$J_{CP} = 3x10^{-5}$$
)

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - 4\cos^2\theta_{13}\sin^2\theta_2$$

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - 4\cos^{2}\theta_{13}\sin^{2}\theta_{23}$$

$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}(2\theta_{13})\sin^{2}\theta_{23}\sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$

$$(1 - \cos^{2}\theta_{13}\sin^{2}\theta_{23})\sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$

IFJ PAN seminar, CP measurement in T2K

Neutrino oscillations parameters

$$\begin{aligned} \sin^2(\theta_{12}) &= 0.307 \pm 0.013 \\ \Delta m_{21}^2 &= (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ \sin^2(\theta_{23}) &= 0.547 \pm 0.021 \quad (\text{Inverted order}) \\ \sin^2(\theta_{23}) &= 0.545 \pm 0.021 \quad (\text{Normal order}) \\ \Delta m_{32}^2 &= (-2.546^{+0.034}_{-0.040}) \times 10^{-3} \text{ eV}^2 \quad (\text{Inverted order}) \\ \Delta m_{32}^2 &= (2.453 \pm 0.034) \times 10^{-3} \text{ eV}^2 \quad (\text{Normal order}) \\ \sin^2(\theta_{13}) &= (2.18 \pm 0.07) \times 10^{-2} \\ \delta, \ CP \text{ violating phase} &= 1.36 \pm 0.17 \ \pi \text{ rad} \end{aligned}$$

© P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Unknowns:

- → is CP conserved ($\delta_{CP} = 0^\circ$ or ±180°) or violated
- → is θ_{23} < 45° (I octant) or > 45° (II octant)
- what is the mass ordering $(m_3 > m_2 > m_1 Normal Ordering or m_2 > m_1 > m_3 Inverted Ordering)$

T2K experiment

30 GeV proton beam production at J-PARC (Japan Proton Accelerator Research Complex)

Neutrino beam production

E, (GeV)

Near detectors

- INGRID (on-axis -0°) ٠
 - plastic scintillator, iron
 - not magnetized
 - beam position and intensity monitoring
- ND280 (off-axis -2.5°) ٠
 - plastic scintillator, water, iron, lead
 - time projection chambers
 - magnetized
 - beam content before oscillations
 - neutrino cross-sections
- WAGASCI BabyMIND (off-axis 1.5°) ٠
 - plastic scintillator, water, iron
 - magnetized
 - neutrino cross-sections at different energies

5.0cr

Super-Kamiokande far detector

- 50 kton water Cherenkov with ~13 000 photomultiplier tubes
- charged particle travelling faster than light in the medium \rightarrow Cherenkov light production
- electron (small mass) \rightarrow lots of scattering \rightarrow fuzzy ring
- muon (bigger mass) \rightarrow less scattering \rightarrow sharp ring
- no magnetic field to distinguish particles from anti-particles
- previously clean water, now doped with Gd
- Gd emits light during deexcitation after neutron capture
- neutrons are mostly produced in \overline{v} interactions (partial $v\overline{/v}$ distinction)

IFJ PAN seminar, CP measurement in T2K

Data sample

Nature results: - ν mode: 1.49 × 10²¹ Protons On Target (POT) - $\overline{\nu}$ mode: 1.64 × 10²¹ POT

This talk (Neutrino 2020): - ν mode: 1.97 × 10²¹ Protons On Target (POT) - $\overline{\nu}$ mode: 1.64 × 10²¹ POT

Neutrino production modelling

- T2K proton target 90 cm long graphite rod
- NA61/SHINE experiment measurement of particles produced in thin (2 cm long) graphite target and in the replica target
- Interactions in the target simulated in FLUKA and tuned to the NA61/SHINE results
- Significant reduction of the flux uncertainty (8% → 5%) after including replica target results
- Beam monitoring:
 - Muon monitor
 - INGRID

Neutrino flux & interaction modelling vs near detector measurements

- ND280 detector
 - magnetized detector \rightarrow separation of ν and $\overline{\nu}$ interactions
 - TPC \rightarrow good particle identification; momentum and angle measurement
 - neutrino flux measurement at the same off-axis angle as SK → measurement of intrinsic v_e and wrong sing background
 - many cross-section results:
 - CC0π, CC1π, CCNπ
 - interactions on C and O
 - + $\nu_{\mu}\,vs\,\nu_{e}$ interactions
 - $\nu vs \overline{\nu}$ interactions
- INGRID and WAGASCI-BabyMIND
 - cross-section for different
 off-axis angles → for different
 neutrino energy spectra

Model tuning to ND280 data

Event reconstruction in SK

Nuclear effects important for energy reconstruction:

- non-zero momenta of nucleons bound in nuclei
- interaction on two nucleons (2p-2h)

 θ_{13}, θ_{23} -octant

2

2.5

E_v (GeV)

Even reconstruction in SK

v-mode

0.9

e-ring and e from

pion decay

IFJ PAN seminar, CP measurement in T2K

Neutrino oscillation parameters

T2K Run 1-10 Preliminary

T2K provides the world's best measurement on $\theta_{_{23}}$ parameter.

Reactor experiments are not sensitive to δ_{CP} parameter, but are much more sensitive to θ_{13} angle. T2K is consistent with their results and uses it to constrain other parameters (e.g. θ_{23} and δ_{CP}).

ν_{e} vs ν_{e} appearance

T2K future

- T2K phase II \rightarrow 2023
 - neutrino beam upgrade
 - ND280 near detector upgrade
 - Super-Kamiokande + Gd
- Hyper-Kamiokande \rightarrow 2027
 - Intermediate Water Cherenkov Detector
 - Hyper-Kamiokande far detector

Super-Kamiokande with Gadolinium

Positron signal

- Gadolinium adding already started
- It will enhance v/v discrimination
- and improve SK ability to observe Supernova Relic Neutrinos
- 0.1% Gd \rightarrow 90% neutron capture efficiency

Neutron signal

Tank refurbishment in 2018 to stop water leakage

IFJ PAN seminar, CP measurement in T2K

Accelerator and neutrino beamline upgrade

Proton beam power upgrade

+ increase of the horn current:

 $250 \text{ kA} \rightarrow 320 \text{ kA}$

 \rightarrow decrease of wrong sign background

Requirements:

- upgrade of the Main Ring power supplies
- upgrade of the focusing horn power supplies
- enhancement of the cooling capacity of the graphite target, the magnetic horns and the beam dump
- disposal of a larger amount of irradiated cooling water

ND280 upgrade

27.05.2021

IFJ PAN seminar, CP measurement in T2K

ND280 upgrade

- Lower energy threshold
- High and flat angular acceptance
- Larger target mass (for tracker part)

Ready for data taking at the beginning of 2023

Hyper-Kamiokande

- Tunnel excavation work for HK already started
- Planned data taking in 2027
- Confirmation on 5σ level if CP is conserved or violated in neutrino oscillations thanks to larger statistics and smaller systematic errors

Intermediate Water Cherenkov Detector

Hyper-Kamiokande detector

	SK	НК	
Site depth	Mozumi (1000m)	Tochibora (650m)	
# PMT	11,129	40,000	
Photo-coverage	40 %	40% (x2 QE)	
Mass Fiducial mass	50 ktons 22.5 ktons	260 kkons 188 ktons	

IFJ involvement

- T2K team in IFJ PAN
 - physicists: Agnieszka Zalewska, Jan Kisiel, Tomasz Wąchała, Marcela Batkiewicz-Kwaśniak
 - engineers: Jacek Świerblewski, Jerzy Michałowski, Henry Przybilski

IFJ team activities in:

- T2K & T2KII
 - neutrino interaction studies: CC0 π on lead, CC π^0 on CH
 - responsible for FGD detector (together with other Polish groups)
 - ND280 run coordinator position
 - design & production of TPC end plates and MicroMegas stiffeners for the upgraded ND280 detector
 - members of committees and co-conveners of working groups: reconstruction, NC/ v_e/π^0 cross-section sub-group (up to 2020), public webpage ND280 upgrade mechanical integration, technical board, safety committee
- Hyper-K
 - members of Outreach Committee & Speakers Board

MicroMegas stiffeners production in IFJ DAI

Summary

- T2K provided the first 3σ constraints on possible δ_{CP} values
- Exclusion of CP conservation in neutrino oscillations at 90% CL
- Weak preference for Normal Ordering and II octant for $\theta_{\scriptscriptstyle 23}$
- Ongoing works towards T2KII and Hyper-Kamiokande

Backup

Neutrino oscillations formula

Two flavour approximation:

$$P_{\mu e} = \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4 E}$$

Three flavour oscillations with mass and CP term:

$$\begin{split} P_{\mu e} &\simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2 \left[\left(1 - \hat{A} \right) \Delta \right]}{\left(1 - \hat{A} \right)^2} + \underbrace{\alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2 \left(\hat{A} \Delta \right)}{\hat{A}^2}}_{C_1} \\ &+ \alpha \sin 2\theta_{13} \cos \theta_{13} \sin 2\theta_{12} \sin(\Delta) \frac{\sin \left(\hat{A} \Delta \right)}{\hat{A}} \frac{\sin \left[\left(1 - \hat{A} \right) \Delta \right]}{\left(1 - \hat{A} \right)} \sin \delta_{\rm CP} \\ &+ \alpha \sin 2\theta_{13} \cos \theta_{13} \sin 2\theta_{12} \cos(\Delta) \frac{\sin \left(\hat{A} \Delta \right)}{\hat{A}} \frac{\sin \left[\left(1 - \hat{A} \right) \Delta \right]}{\left(1 - \hat{A} \right)} \cos \delta_{\rm CP} \\ &\underbrace{\Delta m_{ij}^2 \equiv m_i^2 - m_j^2, \qquad \alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2, \qquad \Delta \equiv \frac{\Delta m_{31}^2 L}{4E} \\ &\hat{A} \equiv \frac{A}{\Delta m_{31}^2}, \qquad A = \pm 2\sqrt{2}G_{\rm F} N_e E \,. \end{split}$$

IFJ PAN seminar, CP measurement in T2K

Neutrino interaction types

Neutrino-nucleus interaction

Neutrino interactions cross-sections

Systematic uncertainties

						,	
	$1 R \mu$		$1 \mathrm{R}e$				
Error source (units: %)	FHC	RHC	FHC	RHC	FHC CC1 π^+	FHC/RHC	
Flux	2.9	2.8	2.8	2.9	2.8	1.4	
Xsec (ND constr)	3.1	3.0	3.2	3.1	4.2	1.5	
Flux+Xsec (ND constr)	2.1	2.3	2.0	2.3	4.1	1.7	
2p2h Edep	0.4	0.4	0.2	0.2	0.0	0.2	
BG_A^{RES} low- p_{π}	0.4	2.5	0.1	2.2	0.1	2.1	
$\sigma(\nu_e), \sigma(\bar{\nu}_e)$	0.0	0.0	2.6	1.5	2.7	3.0	
NC γ	0.0	0.0	1.4	2.4	0.0	1.0	
NC Other	0.2	0.2	0.2	0.4	0.8	0.2	
SK+SI+PN	2.1	1.9	3.1	3.9	13.4	1.2	
Total	3.0	4.0	4.7	5.9	14.3	4.3	

T2K Preliminary

Systematic uncertainties

	Before ND fit					T2K Preliminary		
Error source (units: %) $\ 1H$ FHC	$\begin{array}{c} \mathbb{R}\mu\\ \mathbb{R}\mathrm{HC} \end{array}$	FHC	RHC	$\frac{1 \mathrm{R} e}{\mathrm{FHC} \ \mathrm{CC1} \pi^+}$	FHC/RHC		
Flux Cross-section (all) SK+SI+PN	$ \begin{array}{c c} 5.1 \\ 10.1 \\ 2.9 \end{array} $	$4.7 \\ 10.1 \\ 2.5$	$4.8 \\ 11.9 \\ 3.3$	$4.7 \\ 10.3 \\ 4.4$	$4.9 \\ 12.0 \\ 13.4$	$2.7 \\ 10.4 \\ 1.4$		
Total	11.1	11.3	13.0	12.1	18.7	10.7		

	After ND fit				T2K Preliminary		
Error source (units: %)	$\begin{vmatrix} 1 \mathrm{R} \mu \\ \mathrm{FHC} & \mathrm{RHC} \end{vmatrix}$		$ \begin{array}{c c} 1 R \mu \\ FHC RHC $		$\frac{1 \mathrm{R} e}{\mathrm{FHC} \ \mathrm{CC1} \pi^+}$	FHC/RHC	
Flux Xsec (ND constr)	2.9 3.1	$\begin{array}{c} 2.8\\ 3.0 \end{array}$	$2.8 \\ 3.2$	$2.9 \\ 3.1$	$2.8 \\ 4.2$	$1.4 \\ 1.5$	
Flux+Xsec (ND constr) Xsec (ND unconstrained) SK+SI+PN	$2.1 \\ 0.6 \\ 2.1$	$2.3 \\ 2.5 \\ 1.9$	$2.0 \\ 3.0 \\ 3.1$	$2.3 \\ 3.6 \\ 3.9$	4.1 2.8 13.4	1.7 3.8 1.2	
Total	3.0	4.0	4.7	5.9	14.3	4.3	

T2K + Nova

- Several workshops since 2017
- Challenges and chances:
 - Different experimental setups
 - Different peak energy
 - Different analysis

Joint T2K-NOvA analysis effort:

- Potential to further improve CP violation mass ordering sensitivity. Complementarity of the two experiments:
 - T2K practically insensitive to mass ordering (baseline too short) but more sensitive to CP violation
 - NovA sensitive to mass ordering due to its 860 km baseline. Less sensitive to CP violation.

IFJ PAN seminar, CP

DUNE experiment

27.05.2021