
Searching for new physics with 
di-boson measurements in 

ATLAS
Magdalena Sławińska

IFJ PAN, Kraków

1



Outline

• Motivation
• searches for electroweak di-boson production
• measurements of  triple and quatric gauge boson couplings
• searches for BSM physics in the framework of Standard Model Electroweak Field 

Theory (SMEFT)
• Vector Boson Scattering

• two same-sign W bosons accompanied by two jets 
• Z boson pair and two jets
• photon-induced production of W boson pairs
• vector boson fusion Higgs production using  decays to two W bosons

• Measurement of the four-lepton invariant mass spectrum
• Production of two W bosons and at least one jet

2



Vector boson scattering at the LHC

3



vector boson scattering

Motivation for VBF/VBS 
measurements
• couplings among gauge bosons as well 

as  Higgs and gauge bosons precisely 
predicted in the SM
• EWK di-boson production at high 

energies is a sensitive probe of gauge 
(non-)cancellations that cause cross-
sections to diverge
• probe of BSM (charged, composite, …) 

Higgs in its bosonic couplings
4

quartic gauge coupling

triple gauge couplings

the Higgs boson

BSM physics

[Cheung, Chiang, Yuan, 2008]



Standard Model Effective Field Theory 

• BSM fields above !=1TeV give rise to higher-dimensions operators 
that form SMEFT Lagrangian

• The canonical dimension of SM operators is 4, dim-6 operators  
suppressed by !-2 wrt. the SM, dim-8 operators  suppressed by !-4 , …
• " # (d) specify the strength of the BSM interactions and are known as 

Wilson coefficients, c # (6) = " # (6) / !-2 

• The set of operators of each dimension is renormalizable 
• The complete basis of dim-6 operators is known
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(*)

(*) neglecting all lepton- and baryon-number violating terms, which include dim-5 operators



EFT cross-section measurements

• EFT dimension 6 operators implemented in the SMEFTSim package at 
the leading order
• Predicted cross-sections can be decomposed into:

• The linear (interference) and non-linear (quadratic) EFT contributions
• Quadratic term is of the same dimension as higher-order linear term 

thus some fit variants do not include it

6



Analysis strategy

• Select VVjj events
• Estimate non-VV processes from 

data
• Separate EWK processes from QCD 

interactions using kinematical 
properties:
• forward high energetic jets with large 

separation in rapidity gap
• large di-jet invariant mass
• leptons central wrt. jets

• Measure EWK cross-section, 
(anomalous) couplings, EFT 
coefficients 

1910.09503
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VBS di-boson productionEWK non-VBS

QCD production



Next To Leading Order cross-sections calculations

• LO contributions:
• !("6) EW
• !("s" 5) interference
• !(" s

2" 4) QCD
• NLO contributions

• !("7) EW corrections
• !("s" 6) QCD+EW 
• !("s

2" 5) QCD+EW 
• !(" s

3" 4) QCD corrections

State of the art of theory predictions:
• pure NLO QCD predictions computed for: 

• W±W±j j  (*)
• W±Z jj (**)
• ZZjj (***) and W+W- jj (****)

• pure NLO EW corrections  computed for:
• W±W±j j (*)
• W±Zjj (**)

• QCD+EW corrections:
• W±W±j j (*)
• only !("s" 6) in W±Zjj (***), ZZjj (⧾) and W+W- jj (⧾ ⧾)
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Beyond the leading order the distinction between 
EW and QCD contributions is meaningless.

Full NLO QCD+EW corrections available only for W±W±j j 

(*) Biedermann, Denner, Pellen; 1611.02951, 1708.00268
(**) Denner, Dittmaier, Maierhoefer, Pellen, Schwan; 1904.00882
(***) Campanario et al.; 1305.1623
(****) Jaeger, Zanderighi; 1301.1695 
(⧾) Jaeger, Karlberg, Zanderighi; 1312.3252
(⧾ ⧾) Greiner et al.; 1202.6004
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Experimental challenges in 
reconstructing forward objects
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Jets
Jets reconstructed using AntiKT
algorithm:

Small-R jets (R =0.4)

Large-R jets (R=1.0)

• to identify hadronically decaying 
boosted bosons

• pT >200 GeV, |η|<2

Dedicated techniques to improve 
central jets reconstruction:

• JVT is applied to central jets with pT
< 60 GeV and |η|< 2.4 to suppress 
jets from pileup interactions. 

• Two jet grooming definitions for 
reconstructing the Z→bb decay: 
trimming and soft drop.

Analysis\ min pT |η|<2.5 2.5<|η|< 4.5
semileptonic 20GeV 30GeV
W±W ±jj 20GeV 25GeV
Z! jj 25 GeV 25 GeV
VBF H->WW 30 GeV 30 GeV
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Small-R jets selection in the central and forward region

" = ∆%& + ∆(&



Tagging pileup jets in the forward region (fJVT)

• The dominant source of pileup in 

the forward region is QCD, while 

stochastic pile-up jets populate 

entire rapidity range

• track based jet vertex tagging (JVT) 

is limited to the tracker coverage

|η| < 2.4 

• calorimeter information available for 
jets |η| < 4.9 

• The minimum ∆RpT requirement 
defines the operating point in terms 
of hard-scatter and pileup efficiencies. 

12
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Pileup in the forward region

• Applied in VBF H->WW(lvlv)
• Tests in VBF H->WW using MCTruth information:
• fJVT rejects 56% of events in which pile jet are taken 

as leading VBF jets, and 50% of events in which pile 
jet are taken as subleading VBF jets. 

• The VBF signal efficiency for the FJVT selection is 
about 76%

• used now also in EWK W±W±jj
• plans to use the fJVT tool before VBS jet 

selection in other EWK analyses

bkg (no Wjets) VBF signal
MVA> -0.8 758.96 ± 88.40 48.9  ± 0.59

lead jet is pileup 78.74 ± 25.00 0.13  ± 0.03

lead jet is pileup
pass fJVT

44.76  ± 19.37 0.1  ± 0.02

lead jet is pileup
pass fJVTTight

41.43  ± 19.35 0.1  ± 0.02
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ATL-COM-PHYS-2017-1089

bkg (no Wjets) VBF signal
MVA> -0.8 758.96 ± 88.40 48.9  ± 0.59

lead jet is pileup 190.80 ± 36.34 1.17  ± 0.10

lead jet is pileup
pass fJVT

101.84  ± 11.16 0.77  ± 0.09

lead jet is pileup
pass fJVTTight

89.85  ± 10.79 0.63  ± 0.08



Jets containing heavy flavor quarks (b-jets)

• Flavour tagging used to suppress 
top backgrounds
• The chosen b-tagging algorithms 

vary in efficiency 70%-85%
• b-tagging only possible in central 

region |η| < 2.5, forward jets
originating from top decays
escape tagging

Analysis b-tagging WP
W±W ±jj 85% 
ZZjj 85% 
Z! 70%
VBF H->WW 85%

14



Observation of electroweak same-sign W boson pairs 
accompanied by two jets

• The W±W±j j final state has the largest ratio of 
electroweak to strong production cross 
sections compared to other VBS diboson
processes

• integrated luminosity 36.1 fb−1

• NLO QCD corrections included in EW and QCD 
W±W±j j 

• The measured fiducial signal cross section is

σfid.=2.89+0.51
−0.48 (stat.)   +0.29

−0.28(syst.) fb.

1906.03203
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https://arxiv.org/abs/1906.03203


Observation of electroweak production of two jets 
and a Z-boson pair

• small signal rate predicted by the SM, 
low background 

• EW ZZjj signal generated at the LO, 
QCD-induced ZZjj production includes 
NLO QCD corrections

• Dominating sources of uncertainties 
are: data statics, experimental 
uncertainties related to jet 
measurements and the background 
estimate

• 2 final states: 4l jj and 2l2νjj

• integrated luminosity 139 fb-1

• a fully reconstructed final state when 
both of the Z bosons decay into 
charged leptons

• VBS ZZ production is sensitive to the 
possible anomalous interaction 
between four Z bosons (forbidden at 
tree-level in the SM)

16
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Electroweak production of ZZjj
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signal strengths for QCD and EW production

The hypothesis of no electroweak production is rejected 
with a statistical significance of 5.5σ, and the measured 
cross-section for electroweak production is consistent with 
the SM prediction.



Observation of photon-induced production of W boson pairs

The signal is sensitive to triple and 
quartic gauge boson couplings
In the signal events the number of 
charged particles tracks is expected to 
be 0

• Modeling of hadronic activity is 
constrained using Drell-Yan events in 
data 
• Observed significance of 6.7 standard 
deviations 
• • Measured cross section: 

18

Arxiv:2010.04019

Elastic process

Inelastic process
single dissociation

Inelastic process
double dissociation



Constraining the Higgs boson couplings to longitudinally 
and transversally polarised W and Z bosons

• Vector boson fusion Higgs production 
and WW final state
• Integrated luminosity of 36 fb-1

• aL=gHVLVL/gHVV and  aT=gHVTVT/gHVV,
• in the SM aL= aT=1 
• defined in the Higgs rest frame so that only 

HVLVL and HVTVT coupling combinations are 
present (see 1404.5951)

• Anomalous couplings extracted from:
- σ · Br(H →WW*) 
- the distribution of the signed azimuthal 

angle between two tagging jets ∆Φj j 
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di-boson measurements
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Measurement of the four-lepton invariant mass spectrum

• The integrated luminosity of 139 fb-1

• Selected events contain two same-flavour opposite-sign lepton pairs.
• Measurements of differential cross-section in the invariant four-lepton mass m4l, 
• Measurements of double-differential cross-sections with respect to  both m4l and the following 

kinematic variables: 
• the transverse momentum of the four-lepton system p4l, 
• the rapidity of the four-lepton system y4l, 
• and a matrix-element discriminant DME  

21
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Measurement of the four-lepton invariant mass spectrum

22

The final state has 
contributions from a 
number of processes that 
dominate in different four-
lepton invariant mass 
regions. 



measurement of Z→4l branching fraction

Extracted from the measured fiducial cross-section in the mass bin 
corresponding to mZ
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Higgs boson measurements using 
4 lepton invariant mass

• Constraint on off-shell Higgs boson signal 
strength

-> from double-differential cross-section 
measured as a function of m4l and the matrix 
element discriminant DME,

• Constraints to tree level Higgs couplings to 
top quarks (ct) and to gluons (cg) 

-> from the measured differential cross-section 
as a function of m4l.
On-shell rates for Higgs production via gluon–
gluon fusion are only sensitive to|ct+cg|2, but 
measurements at higher mass (>180GeV) can 
be used to probe these parameters 
independently
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Constraints on EFT Wilson coefficients

Only linear term included in the fit 
(non-linear variant included in the 
paper as well) 25

Higgs-gauge bosons couplings

gauge bosons couplings

Zàll vertex

operators affecting:

four-fermion contact terms



WW+jets

• The !!+jets cross-section is 
evaluated in the fiducial phase space 
of the !!à"#$# decay channel
• at least one jet required in the event 

selection
• Background estimation: 

• Top quark: ttbar from CR, Wt from 
simulation

• Drell-Yan from MC (validation region)
• Fake-lepton backgrounds estimated using 

a data-driven technique
• Backgrounds from !%, %%, !& and %&

from simulation
• triboson background neglected

26
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WW+j production



WW+jets

• The differential cross-
sections are determined 
using an iterative Bayesian 
unfolding method and 
compared to numerous 
theory predictions

• Fiducial cross-section and 
differential cross-section 
with respect to several 
kinematical variables 
related to leptons and jets 
are measured

27



WW+ jets
• Limits set on anomalous triple gauge 

couplings

• Limits set on a single EFT parameter cW

• Interference between the Standard 
Model amplitude and the anomalous 
amplitude enhanced by kinematical 
selection (pT

j> 200 GeV)

28



Di-Higgs measurements
Di-Higgs production in the SM and the trilinear coupling (+BSM searches)
2014 projection vs results of early 2015+16 combination
update on bblνlν (inclusion of 3 channels)
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Electroweak Symmetry Breaking in the SM

• The SM Higgs potential

EWSB

Higgs triple and quadruple self-couplings

30

A different electroweak symmetry breaking mechanism would result in a different  shape of the Higgs potential.

mh
2=λv2



The shape of the Higgs potential
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Measuring its couplings to bosons  and fermions ⬌ properties of the Higgs potential close to 
the vacuum.

from 1511.06495 



The shape of the Higgs potential
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Measuring its couplings to bosons  and fermions ⬌ properties of the Higgs potential close to 
the vacuum.

• But... the potential can be different, even non-analytic!

from 1511.06495 

Phys.Rev. D7 (1973) 1888–1910 



The shape of the Higgs potential
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Measuring its couplings to bosons  and fermions ⬌ properties of the Higgs potential close to 
the vacuum.

• But... the potential can be different, even non-analytic!

• Leading differences among various potentials are visible in the value of the Higgs self-
couplings. In general, both self-couplings can differ.

• Higgs triple-interactions can be probed directly by di-Higgs production processes.

from 1511.06495 

Phys.Rev. D7 (1973) 1888–1910 



Di-Higgs production channels in the SM

3 orders
of magnitude
wrt. single Higgs
production

> factor 20

34

(gluon fusion)   



Cross-section calculations
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Di Higgs production is loop induced already at the leading order.

λ3

• LO

• NLO (                    )

• NNLO+NNLL in                      (Born normalised to exact LO)

• exact         for real emission & LO reweighted virtuals

• NLO

[Glover, van der Bij `88] [Plehn, Spira, Zerwas `96] [Djouadi et al `99] …

[Dawson, Dittmaier, Spira `98] [de Florian, Mazzitelli `13]

[de Florian, Mazzitelli `13, `15]

[Frederix et al `14] [Maltoni, Vryonidou, Zaro `14]

[Borowka, Greiner, Heinrich, Jones, MK, Schlenk, Schubert, Zirke `16] 



ggà hh kinematics
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λ3

arXiv:1408:5010

• The Higgs self-coupling contribution small due to Higgs 
propagators.

• Negative interference between both diagrams results in 
small total cross-section.

• Kinematics of the process depends on !3.

☐ contribution
△ contribution
total



Expected numbers of di-Higgs events at the LHC

Final state
Branching 
ratios

N Run 1
(L=20 fb-1)

N Run 2 
(L=36 fb-1)

N HL-LHC
(L=3000 fb-1)

bbbb 34% 76 463 45841
bb WW(lvlv) 25%(0.3%) 56 (0.6) 340 (3.9) 33641 (383)
bbττ 4% 8 50 4937
bbZZ (lvlv) 3%(0.1%) 6.8 (0.2) 41.7 (1.1) 4123 (111)
bbγγ 0.3% 1 4 357
γγWW(lvjj) 0.1%(0.03%) 0 1(0.4) 131(38)
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LHCHXSWG YR4, arXiv:1610.07922v2,
based on: arXiv:1505.07122, arXiv:1604.06447 



Prospects for measuring Higgs pair production in the 
channel H(→γγ)H(→bb) using the ATLAS detector at the 
HL-LHC 

• Projections made in 2014 using fast 
simulation of the upgraded detector 
performance

• The expected number of  background events 
is ∼47 and signal events is ~8, corresponding 
to a signal significance of 1.3 σ.
• cut-based event selection
• optimistic assumptions about pileup 
• rough estimate of flavor tagging performance 
• pessimistic assumptions of detector coverage

• systematical uncertainties not included
• Overall projected sensitivity much worse than 

assumed by theorists mainly due to 
momentum resolution of reconstructed 
particles.
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ATL-PHYS-PUB-2014-019

exclusion at 95% C.L. 
λ/λSM <−1.3 and λ/λSM < 8.7.



Search for Higgs boson pair production in the 
bbγγ final state
• pp collision data at √s=13 TeV
• integrated luminosity of 36.1/fb
• Selection requirements:

• two isolated photons 
• two jets whose invariant mass is 

compatible with the Higgs mass
• 1 or 2 jets are tagged as b-jets
• loose and tight kinematic selections 

defined (b-tagging efficiency, jets 
requirements and mjj window)

• Signal extracted using a fit to the 
diphoton invariant mass distribution of 
the selected events. 

• The Higgs boson self-coupling is 
constrained at 95% CL to −8.2<
λHHH/λSMHHH <13.2

39

JHEP 11 (2018) 040

https://link.springer.com/article/10.1007/JHEP11(2018)040


Search for Higgs boson pair production in the 
bbγγ final state

• Additional di-Higgs production mechanism 
through an electroweak singlet X.

• The signal is extracted from the four-object 
invariant mass (mγγjj ) spectrum by fitting a 
resonance peak superimposed on a smoothly 
changing background.

• The narrow-width approximation is used, 
probing the range the range 260 
GeV<mX<1000 GeV. 

• Loose selection is used for resonances with 
mX ≤ 500 GeV and the tight selection for 
resonances with mX ≥ 500 GeV

40

Limits on a BSM electroweak singlet



2019 combination
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• Combination of 6 analyses
• pp collision data at √s=13 TeV
• integrated luminosity of 36.1/fb

• Upper limits at 95% CL on the 
cross-section of the ggF non-
resonant SM HH production as a 
function of κλ (=λ/λSM ). 

Phys. Lett. B 800 (2020) 135103



Limits on spin-0 heavy scalar cross-sections

Run 1:
CMS measurements & ATLAS combination

Run 2:
ATLAS 2019 combination

42
Improvements due to: larger cross-sections (31fb vs 10 fb ), luminosity 
(36.1/fb vs 17.9/fb), experimental reconstruction



Search for non-resonant Higgs boson pair 
production bb lvlv channel
• bb+WW/ZZ/!! final states
• main backgrounds: Top and Z/γ∗ + jets

processes ,
• signal selection 

• mll∈(20,60) GeV and 
• mbb∈(110,140)GeV

• DNN classifier trained on HH→bbWW∗
events
• The classifier produces four outputs 
pi (i∈ {HH,Top,Z-ll,Z-ττ}).
• The main discriminant 

dHH=ln[pHH/(pTop+pZ-ll+pZ-ττ)].

43

Phys. Lett. B 801 (2020) 135145



Conclusions

• New di-boson measurements at the LHC crucial to fully explore the SM SU(2)xU(1) 
symmetry structure and EW symmetry breaking 
• ATLAS studies move from first observations of rare EW processes to precision measurements 
• Numerous constraints on New Physics in anomalous couplings and using the SMEFT framework

• Interplay between SM and Higgs measurements are starting to be explored through 
measurements of four leptons invariant mass spectra and EFT fits

• Di-Higgs searches performed in several channels
• SM Higgs production not yet observed
• Limits on the Higgs trilinear coupling largely improved
• Exclusion limits on BSM resonances

• Most measurements statistically limited; improvements are expected at Run3 and HL-
LHC

• Extensive work, challenges and opportunities ahead to collect quality data and produce 
good physics results
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Backup
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rapidity and pseudorapidity
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rapidity

In the limit mà 0 !à y

pseudorapidity

beam

forward
region

central region
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