Searching for new physics with di-boson measurements in ATLAS

Magdalena Sławińska

IFJ PAN, Kraków

Outline

- Motivation
 - searches for electroweak di-boson production
 - measurements of triple and quatric gauge boson couplings
 - searches for BSM physics in the framework of Standard Model Electroweak Field Theory (SMEFT)
- Vector Boson Scattering
 - two same-sign W bosons accompanied by two jets
 - Z boson pair and two jets
 - photon-induced production of W boson pairs
 - vector boson fusion Higgs production using decays to two W bosons
- Measurement of the four-lepton invariant mass spectrum
- Production of two W bosons and at least one jet

Vector boson scattering at the LHC

vector boson scattering

Motivation for VBF/VBS measurements

- couplings among gauge bosons as well as Higgs and gauge bosons precisely predicted in the SM
- EWK di-boson production at high energies is a sensitive probe of gauge (non-)cancellations that cause crosssections to diverge
- probe of BSM (charged, composite, ...) Higgs in its bosonic couplings

Standard Model Effective Field Theory

- BSM fields above Λ =1TeV give rise to higher-dimensions operators that form SMEFT Lagrangian $L_{\rm EFT} = L_{\rm SM} + \sum_{i} \frac{\bar{C}_{i}^{(6)}}{\Lambda^{2}} \mathscr{O}_{i}^{(6)} + \sum_{i} \frac{\bar{C}_{i}^{(8)}}{\Lambda^{4}} \mathscr{O}_{i}^{(8)} + \dots$
- The canonical dimension of SM operators is 4, dim-6 operators suppressed by Λ^{-2} wrt. the SM, dim-8 operators suppressed by Λ^{-4} , ...
- $C_i^{(d)}$ specify the strength of the BSM interactions and are known as Wilson coefficients, $c_i^{(6)} = C_i^{(6)} / \Lambda^{-2}$
- The set of operators of each dimension is renormalizable
- The complete basis of dim-6 operators is known JHEP10(2010) 085

EFT cross-section measurements

- EFT dimension 6 operators implemented in the SMEFTSim package at the leading order
- Predicted cross-sections can be decomposed into:

$$\vec{\sigma}^{\text{pred}} = \vec{\sigma}^{\text{SM}} \times \left(1 + c_i \cdot \vec{\sigma}^{\text{INT}} / \vec{\sigma}^{\text{LO SM}} + c_i^2 \cdot \vec{\sigma}^{\text{BSM}} / \vec{\sigma}^{\text{LO SM}}\right)$$

- The linear (interference) and non-linear (quadratic) EFT contributions
- Quadratic term is of the same dimension as higher-order linear term thus some fit variants do not include it

Analysis strategy

- Select VVjj events
- Estimate non-VV processes from data
- Separate EWK processes from QCD interactions using kinematical properties:
 - forward high energetic jets with large separation in rapidity gap
 - large di-jet invariant mass
 - leptons central wrt. jets
- Measure EWK cross-section, (anomalous) couplings, EFT coefficients

Next To Leading Order cross-sections calculations

- LO contributions:
 - *O*(*α*⁶) EW
 - $\mathcal{O}(\alpha_{s}\alpha^{5})$ interference
 - $\mathcal{O}(\alpha_s^2 \alpha^4)$ QCD
- NLO contributions
 - $\mathcal{O}(\alpha^7)$ EW corrections
 - $\mathcal{O}(\alpha_{s}\alpha^{6})$ QCD+EW
 - $\mathcal{O}(\alpha_s^2 \alpha^5)$ QCD+EW
 - $\mathcal{O}(\alpha_s^3 \alpha^4)$ QCD corrections

Beyond the leading order the distinction between EW and QCD contributions is meaningless.

Full NLO QCD+EW corrections available only for $W^{\pm}W^{\pm}j$ j

State of the art of theory predictions:

- pure NLO QCD predictions computed for:
 - W[±]W[±]j j (*)
 - W[±]Z jj (**)
 - ZZjj (***) and W⁺W⁻ jj (****)
- pure NLO EW corrections computed for:
 - W[±]W[±]j j (*)
 - W[±]Zjj (**)
- QCD+EW corrections:
 - W[±]W[±]j j (*)
 - only $\mathcal{O}(\alpha_{s}\alpha^{6})$ in W[±]Zjj (***), ZZjj (+) and W⁺W⁻ jj (+ +)

- (**) Denner, Dittmaier, Maierhoefer, Pellen, Schwan; 1904.00882
- (***) Campanario et al.; 1305.1623
- (****) Jaeger, Zanderighi; 1301.1695
- (+) Jaeger, Karlberg, Zanderighi; 1312.3252
- (+ +) Greiner et al.; 1202.6004

^(*) Biedermann, Denner, Pellen; 1611.02951, 1708.00268

in this talk

Experimental challenges in reconstructing forward objects

Jets

Jets reconstructed using AntiKT algorithm:

Small-R jets (R =0.4)

Large-R jets (R=1.0)

- to identify hadronically decaying boosted bosons
- p_T >200 GeV, |η|<2

Dedicated techniques to improve central jets reconstruction:

- JVT is applied to central jets with p_T < 60 GeV and $|\eta| < 2.4$ to suppress jets from pileup interactions.
- Two jet grooming definitions for reconstructing the Z→bb decay: trimming and soft drop.

Small-R jets selection in the central and forward region

Analysis\ min p _T	η <2.5	2.5< η < 4.5
semileptonic	20GeV	30GeV
W [±] W [±] jj	20GeV	25GeV
Zγ jj	25 GeV	25 GeV
VBF H->WW	30 GeV	30 GeV

$$R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

Tagging pileup jets in the forward region (fJVT)

- The dominant source of pileup in the forward region is QCD, while stochastic pile-up jets populate entire rapidity range
- track based jet vertex tagging (JVT) is limited to the tracker coverage |η| < 2.4
- calorimeter information available for jets |η| < 4.9
- The minimum $\Delta R p_T$ requirement defines the operating point in terms of hard-scatter and pileup efficiencies.

$$R_{\rm pT} = \frac{\sum_k p_{\rm T}^{{\rm tr}k_k}({\rm PV}_0)}{p_{\rm T}^{\rm jet}}.$$

Pileup in the forward region

- Applied in VBF H->WW(lvlv)
 - Tests in VBF H->WW using MCTruth information:
 - fJVT rejects 56% of events in which pile jet are taken as leading VBF jets, and 50% of events in which pile jet are taken as subleading VBF jets.
 - The VBF signal efficiency for the FJVT selection is about 76%
- used now also in EWK W[±]W[±]jj
- plans to use the fJVT tool before VBS jet selection in other EWK analyses

	bkg (no Wjets)	VBF signal		
MVA> -0.8	758.96 ± 88.40	48.9 ± 0.59		
lead jet is pileup	78.74 ± 25.00	0.13 ± 0.03		
lead jet is pileup pass fJVT	44.76 ± 19.37	0.1 ± 0.02		
lead jet is pileup pass fJVTTight	41.43 ± 19.35	0.1 ± 0.02		

ATI -COM-PHYS-2017-1089

	bkg (no Wjets)	VBF signal
MVA> -0.8	758.96 ± 88.40	48.9 ± 0.59
lead jet is pileup	190.80 ± 36.34	1.17 ± 0.10
lead jet is pileup pass fJVT	101.84 ± 11.16	0.77 ± 0.09
lead jet is pileup pass fJVTTight	89.85 ± 10.79	0.63 ± 0.08

Jets containing heavy flavor quarks (b-jets)

- Flavour tagging used to suppress top backgrounds
- The chosen b-tagging algorithms vary in efficiency 70%-85%
- b-tagging only possible in central region |η| < 2.5, forward jets originating from top decays escape tagging

Analysis	b-tagging WP
W [±] W [±] jj	85%
ZZjj	85%
Ζγ	70%
VBF H->WW	85%

Observation of electroweak same-sign W boson pairs accompanied by two jets 1906.03203

- The W[±]W[±]j j final state has the largest ratio of electroweak to strong production cross sections compared to other VBS diboson processes
- integrated luminosity 36.1 fb⁻¹
- NLO QCD corrections included in EW and QCD W[±]W[±]j j
- The measured fiducial signal cross section is

 $\sigma_{fid.}$ =2.89^{+0.51}_{-0.48} (stat.) ^{+0.29}_{-0.28}(syst.) fb.

	e^+e^+	e^-e^-	$e^+\mu^+$	$e^-\mu^-$	$\mu^+\mu^+$	$\mu^-\mu^-$	Combined
WZ	$1.48\pm~0.32$	1.09 ± 0.27	11.6 ± 1.9	$7.9~\pm~1.4$	$5.0~\pm~0.7$	$3.4~\pm~0.6$	30 ± 4
Non-prompt	$2.2~\pm~1.1$	$1.2~\pm~0.6$	$5.9~\pm~2.5$	$4.7 ~\pm~ 1.6$	$0.56\pm~0.05$	$0.68\pm~0.13$	15 ± 5
e/γ conversions	$1.6~\pm~0.4$	$1.6~\pm~0.4$	$6.3~\pm~1.6$	$4.3~\pm~1.1$			$13.9~\pm~2.9$
Other prompt	$0.16\pm~0.04$	$0.14\pm~0.04$	$0.90\pm~0.20$	$0.63\pm~0.14$	$0.39\pm~0.09$	$0.22\pm~0.05$	$2.4~\pm~0.5$
$W^{\pm}W^{\pm}jj$ strong	0.35 ± 0.13	$0.15\pm~0.05$	$2.9~\pm~1.0$	1.2 ± 0.4	$1.8~\pm~0.6$	$0.76\pm~0.25$	7.2 ± 2.3
Expected background	5.8 ± 1.4	$4.1~\pm~1.1$	28 ± 4	18.8 ± 2.6	7.7 ± 0.9	$5.1~\pm~0.6$	69 ± 7
$W^{\pm}W^{\pm}jj$ electroweak	$5.6~\pm~1.0$	2.2 ± 0.4	24 ± 5	9.4 ± 1.8	13.4 ± 2.5	5.1 ± 1.0	60 ± 11
Data	10	4	44	28	$\overline{25}$	11	122

15

Observation of electroweak production of two jets and a Z-boson pair

arXiv:2004.10612

- 2 final states: 4l jj and 2l2vjj
- integrated luminosity 139 fb⁻¹
- a fully reconstructed final state when both of the Z bosons decay into charged leptons
- VBS ZZ production is sensitive to the possible anomalous interaction between four Z bosons (forbidden at tree-level in the SM)

- small signal rate predicted by the SM, low background
- EW ZZjj signal generated at the LO, QCD-induced ZZjj production includes NLO QCD corrections
- Dominating sources of uncertainties are: data statics, experimental uncertainties related to jet measurements and the background estimate

Electroweak production of ZZjj

The hypothesis of no electroweak production is rejected with a statistical significance of 5.5σ , and the measured cross-section for electroweak production is consistent with the SM prediction.

signal strengths for QCD and EW production

	$\mu_{\rm EW}$	$\mu_{\text{QCD}}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	1.5 ± 0.4	0.95 ± 0.22	5.5 (3.9) σ
$\ell\ell u u j j$	0.7 ± 0.7	-	$1.2 (1.8) \sigma$
Combined	1.35 ± 0.34	0.96 ± 0.22	5.5 (4.3) σ

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
lllljj	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$	$1.14 \pm 0.04 (stat) \pm 0.20 (theo)$
llvvjj	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

Observation of photon-induced production of W boson pairs

The signal is sensitive to triple and quartic gauge boson couplings

In the signal events the number of charged particles tracks is expected to be 0

- Modeling of hadronic activity is constrained using Drell-Yan events in data
- Observed significance of 6.7 standard deviations

 3.13 ± 0.31 (stat.) ± 0.28 (syst.) fb

• • Measured cross section:

Constraining the Higgs boson couplings to longitudinally and transversally polarised W and Z bosons

- Vector boson fusion Higgs production and WW final state
- Integrated luminosity of 36 fb⁻¹
- $a_L = g_{HVLVL}/g_{HVV}$ and $a_T = g_{HVTVT}/g_{HVV}$,
 - in the SM $a_L = a_T = 1$
 - defined in the Higgs rest frame so that only HV_LV_L and HV_TV_T coupling combinations are present (see 1404.5951)
- Anomalous couplings extracted from:
- $\sigma \cdot Br(H \rightarrow WW^*)$
- the distribution of the signed azimuthal angle between two tagging jets $\Delta \Phi_{j\,j}$

di-boson measurements

Measurement of the four-lepton invariant mass spectrum

- The integrated luminosity of 139 fb⁻¹
- Selected events contain two same-flavour opposite-sign lepton pairs.
- Measurements of differential cross-section in the invariant four-lepton mass m₄₁,
- Measurements of double-differential cross-sections with respect to both m₄₁ and the following kinematic variables:
 - the transverse momentum of the four-lepton system p₄₁,
 - the rapidity of the four-lepton system y₄,
 - and a matrix-element discriminant DME

Measurement of the four-lepton invariant mass spectrum

The final state has contributions from a number of processes that dominate in different fourlepton invariant mass regions.

measurement of $Z \rightarrow 4I$ branching fraction

Extracted from the measured fiducial cross-section in the mass bin corresponding to $\ensuremath{m_{Z}}$

Measurement	${\cal B}_{Z ightarrow 4\ell}/10^{-6}$
ATLAS, $\sqrt{s} = 7$ TeV and 8 TeV [8]	$4.31 \pm 0.34 (stat) \pm 0.17 (syst)$
CMS, $\sqrt{s} = 13$ TeV [6]	$4.83^{+0.23}_{-0.22}$ (stat) $^{+0.32}_{-0.29}$ (syst) ± 0.08 (theo) ± 0.12 (lumi)
ATLAS, $\sqrt{s} = 13$ TeV	$4.70 \pm 0.32 ({ m stat}) \pm 0.21 ({ m syst}) \pm 0.14 ({ m lumi})$

Higgs boson measurements using 4 lepton invariant mass

 Constraint on off-shell Higgs boson signal strength

-> from double-differential cross-section measured as a function of m_{41} and the matrix element discriminant D_{ME} ,

- Constraints to tree level Higgs couplings to top quarks (c_t) and to gluons (c_g)

-> from the measured differential cross-section as a function of m_{4l} .

On-shell rates for Higgs production via gluongluon fusion are only sensitive to |ct+cg|², but measurements at higher mass (>180GeV) can be used to probe these parameters independently

Constraints on EFT Wilson coefficients

Observable 95% CL Expected [TeV⁻²] 95% CL Observed [TeV⁻²] Coefficient [-0.011, 0.013][-0.0090, 0.014] m_{34} VS $m_{4\ell}$ C_{HG} ĈнG m_{34} vs $m_{4\ell}$ [-0.46, 0.44][-0.63, 0.28] m_{34} VS $m_{4\ell}$ c_{HD} -0.29, 0.13[-0.21, 0.20] m_{34} vs $m_{4\ell}$ C_{HWB} [-10, 10][-3.0, 18] c_{Hd} $p_{\rm T,12}$ vs $m_{4\ell}$ $|\Delta \phi_{\ell \ell}|$ vs $m_{4\ell}$ [-3.5, 3.7][-1.6, 6.2] C_{Hu} [-0.48, 0.46][-0.76, 0.21] $|\Delta \phi_{\text{pairs}}| \text{ vs } m_{4\ell}$ C_{He} $c_{Hl}^{(1)} \\ c_{Hl}^{(3)} \\ c_{Hq}^{(1)} \\ c_{Hq}^{(3)} \\ c_{Hq}^{(3)}$ [-0.37, 0.38][-0.19, 0.57] $|\Delta \phi_{\text{pairs}}| \text{ vs } m_{4\ell}$ $|\Delta \phi_{\ell\ell}|$ vs $m_{4\ell}$ [-0.29, 0.28][-0.51, 0.12][-0.81, 0.78][-1.1, 0.46] m_{34} VS $m_{4\ell}$ [-0.34, 0.33][-0.15, 0.54] $|\Delta \phi_{\text{pairs}}| \text{ vs } m_{4\ell}$ [-1.3, 1.8][-0.98, 2.3] m_{34} vs $m_{4\ell}$ C_{ed} [-58, 64][-27, 100] C_{ee} m_{34} VS $m_{4\ell}$ [-0.36, 0.64][-0.61, 0.45]Ceu $m_{4\ell}$ [-1.8, 2.5][-1.4, 3.0] m_{34} vs $m_{4\ell}$ C_{ld} [-63, 68][-18, 130] m_{34} VS $m_{4\ell}$ C_{le} [-39, 43][-17, 71] m_{34} VS $m_{4\ell}$ c_{ll} $c_{ll}^{(1)} \\ c_{lq}^{(1)} \\ c_{lq}^{(3)} \\ c_{lq}^{(3)}$ [-0.33, 0.34][-0.17, 0.51] $|\Delta \phi_{\text{pairs}}| \text{ vs } m_{4\ell}$ [-0.77, 0.40][-4.1, 0.55] $m_{4\ell}$ [-0.051, 0.098][-0.061, 0.083] m_{34} vs $m_{4\ell}$ [-1.4, 0.98][-0.77, 1.4] c_{lu} $m_{4\ell}$

[-1.1, 0.84]

 $m_{4\ell}$

 c_{qe}

operators affecting:

Higgs-gauge bosons couplings

gauge bosons couplings

 $Z \rightarrow II vertex$

four-fermion contact terms

Only linear term included in the fit (non-linear variant included in the paper as well)

[-0.67, 1.2]

WW+jets

WW+j production

Fiducial selection requirements							
p_{T}^{ℓ}	>	27 GeV					
$ \eta^\ell $	<	2.5					
$m_{e\mu}$	>	85 GeV					
p_{T}^{j}	>	30 GeV					
$ y^{j} $	<	4.5					

- The WW+jets cross-section is evaluated in the fiducial phase space of the WW→evµv decay channel
- at least one jet required in the event selection
- Background estimation:
 - Top quark: ttbar from CR, Wt from simulation
 - Drell-Yan from MC (validation region)
 - Fake-lepton backgrounds estimated using a data-driven technique
 - Backgrounds from $WZ, ZZ, W\gamma$ and $Z\gamma$ from simulation
 - triboson background neglected

WW+jets

- The differential crosssections are determined using an iterative Bayesian unfolding method and compared to numerous theory predictions
- Fiducial cross-section and differential cross-section with respect to several kinematical variables related to leptons and jets are measured

WW+ jets

• Limits set on anomalous triple gauge couplings

- Limits set on a single EFT parameter c_w
- Interference between the Standard Model amplitude and the anomalous amplitude enhanced by kinematical selection (p_T^j> 200 GeV)

Table 8: Observed and expected confidence intervals (CI) for c_W for a linearized and a quadratic EFT fit of $m_{e\mu}$, when requiring either jet $p_T > 30$ GeV or jet $p_T > 200$ GeV. The new-physics scale Λ is set to 1 TeV.

Jet $p_{\rm T}$	Linear only	68% CI obs.	95% CI obs.	68% CI exp.	95% CI exp.
> 30 GeV	yes	[-1.64, 2.86]	[-3.85, 4.97]	[-2.30, 2.27]	[-4.53, 4.41]
> 30 GeV	no	[-0.20, 0.20]	[-0.33, 0.33]	[-0.28, 0.27]	[-0.39, 0.38]
> 200 GeV	yes	[-0.29, 1.84]	[-1.37, 2.81]	[-1.12, 1.09]	[-2.24, 2.10]
> 200 GeV	no	[-0.43, 0.46]	[-0.60, 0.58]	[-0.38, 0.33]	[-0.53, 0.48]

Di-Higgs measurements

Di-Higgs production in the SM and the trilinear coupling (+BSM searches) 2014 projection vs results of early 2015+16 combination update on bblvlv (inclusion of 3 channels)

Electroweak Symmetry Breaking in the SM

• The SM Higgs potential

$$\lambda_3=\lambda_4=m_h^2/(2v^2)$$

 $m_h^2 = \lambda v^2$

Higgs triple and quadruple self-couplings

A different electroweak symmetry breaking mechanism would result in a different shape of the Higgs potential.

The shape of the Higgs potential

Measuring its couplings to bosons and fermions ↔ properties of the Higgs potential close to the vacuum.

from 1511.06495

The shape of the Higgs potential

Measuring its couplings to bosons and fermions ↔ properties of the Higgs potential close to the vacuum.

from 1511.06495

• But... the potential can be different, even non-analytic!

$$V(h) \rightarrow \frac{1}{2} \lambda (h^{\dagger} h)^2 \log \left[\frac{(h^{\dagger} h)}{m^2} \right].$$

Phys.Rev. D7 (1973) 1888–1910

The shape of the Higgs potential

Measuring its couplings to bosons and fermions ↔ properties of the Higgs potential close to the vacuum.

from 1511.06495

But... the potential can be different, even non-analytic!

 $V(h)
ightarrow rac{1}{2} \lambda (h^\dagger h)^2 ext{log} \left[rac{(h^\dagger h)}{m^2}
ight].$

Phys.Rev. D7 (1973) 1888–1910

- Leading differences among various potentials are visible in the value of the Higgs selfcouplings. In general, both self-couplings can differ.
- Higgs triple-interactions can be probed directly by di-Higgs production processes.

Di-Higgs production channels in the SM

Cross-section calculations

Di Higgs production is loop induced already at the leading order.

- LO [Glover, van der Bij `88] [Plehn, Spira, Zerwas `96] [Djouadi et al `99] ...
- NLO ($m_t \rightarrow \infty$) [Dawson, Dittmaier, Spira `98] [de Florian, Mazzitelli `13]
- NNLO+NNLL in $m_t
 ightarrow \infty$ (Born normalised to exact LO)

[de Florian, Mazzitelli `13, `15]

• exact m_t for real emission & LO reweighted virtuals

[Frederix et al `14] [Maltoni, Vryonidou, Zaro `14]

• NLO

[Borowka, Greiner, Heinrich, Jones, MK, Schlenk, Schubert, Zirke `16] 35

 $gg \rightarrow hh$ kinematics

- The Higgs self-coupling contribution small due to Higgs propagators.
- Negative interference between both diagrams results in small total cross-section.
- Kinematics of the process depends on λ_3 .

arXiv:1408:5010

Expected numbers of di-Higgs events at the LHC

	Branching	N Run 1	N Run 2	N HL-LHC	
Final state	ratios	(L=20 fb ⁻¹)	(L=36 fb ⁻¹)	(L=3000 fb ⁻¹)	
bbbb	34%	76	463	45841	
bb WW(lvlv)	25%(0.3%)	56 (0.6)	340 (3.9)	33641 (383)	
bbττ	4%	8	50	4937	
bbZZ (lvlv)	3%(0.1%)	6.8 (0.2)	41.7 (1.1)	4123 (111)	
bbγγ	0.3%	1	4	357	
γγWW(lvjj)	0.1%(0.03%)	0	1(0.4)	131(38)	

LHCHXSWG YR4, arXiv:1610.07922v2, based on: arXiv:1505.07122, arXiv:1604.06447

Prospects for measuring Higgs pair production in the channel $H(\rightarrow\gamma\gamma)H(\rightarrow bb)$ using the ATLAS detector at the HL-LHC ATL-PHYS-PUB-2014-019

- Projections made in 2014 using fast simulation of the upgraded detector performance
- The expected number of background events is \sim 47 and signal events is \sim 8, corresponding to a signal significance of 1.3 σ .
 - cut-based event selection
 - optimistic assumptions about pileup
 - rough estimate of flavor tagging performance
 - pessimistic assumptions of detector coverage
- systematical uncertainties not included
- Overall projected sensitivity much worse than assumed by theorists mainly due to momentum resolution of reconstructed particles.

exclusion at 95% C.L. λ/λ_{SM} <-1.3 and λ/λ_{SM} < 8.7.

Search for Higgs boson pair production in the bbyy final state $\frac{11 (2018) 040}{11 (2018) 040}$

- pp collision data at vs=13 TeV
- integrated luminosity of 36.1/fb
- Selection requirements:
 - two isolated photons
 - two jets whose invariant mass is compatible with the Higgs mass
 - 1 or 2 jets are tagged as b-jets
 - loose and tight kinematic selections defined (b-tagging efficiency, jets requirements and m_{jj} window)
- Signal extracted using a fit to the diphoton invariant mass distribution of the selected events.
- The Higgs boson self-coupling is constrained at 95% CL to -8.2< $\lambda_{HHH}/\lambda^{SM}_{HHH}$ <13.2

Search for Higgs boson pair production in the $bb\gamma\gamma$ final state

Limits on a BSM electroweak singlet

- Additional di-Higgs production mechanism through an electroweak singlet X.
- The signal is extracted from the four-object invariant mass $(m_{\gamma\gamma jj})$ spectrum by fitting a resonance peak superimposed on a smoothly changing background.
- The narrow-width approximation is used, probing the range the range 260 GeV<m_x<1000 GeV.
- Loose selection is used for resonances with $m_x \le 500$ GeV and the tight selection for resonances with $m_x \ge 500$ GeV

2019 combination

- Combination of 6 analyses
 - pp collision data at √s=13 TeV
 - integrated luminosity of 36.1/fb

	$bar{b}bar{b}$	$b\bar{b}W^+W^-$	$bar{b} au^+ au^-$	$W^+W^-W^+W^-$	$bar{b}\gamma\gamma$	$W^+W^-\gamma\gamma$
$\mathcal{B}(HH \to x\bar{x}y\bar{y})$	0.34	0.25	0.073	0.046	$2.6 \cdot 10^{-3}$	$1.0 \cdot 10^{-3}$
$\mathcal{L}_{\text{int}} [\text{fb}^{-1}]$	27.5 [36.1]	36.1	36.1	36.1	36.1	36.1
Categories	2 [2–5]	1 [1]	3 [2–3]	9 [9]	2 [2]	1 [1]
Discriminant	$m_{HH} [m_{HH}]$	c.e. [<i>m_{HH}</i>]	BDT [BDT]	c.e. [c.e.]	$m_{\gamma\gamma} [m_{HH}]$	$m_{\gamma\gamma} [m_{\gamma\gamma}]$
Model	NR [<i>S</i> / <i>G</i>]	NR $[S/G]$	NR [<i>S</i> / <i>G</i>]	NR [S]	NR [S]	NR [S]
$m_{S/G}$ [TeV]	[0.26–3.00]	[0.50–3.00]	[0.26–1.00]	[0.26–0.50]	[0.26–1.00]	[0.26–0.50]

• Upper limits at 95% CL on the cross-section of the ggF non-resonant SM HH production as a function of κ_{λ} (= λ/λ_{SM}).

	κλ Allowed $κλ$ interval at 95% CL		
Final state	Obs.	Exp.	Exp. stat.
bbbb	-10.9 - 20.1	-11.6 - 18.8	-9.8 - 16.3
$b\bar{b}\tau^{+}\tau^{-}$	-7.4 - 15.7	-8.9 - 16.8	-7.8 - 15.5
$b\bar{b}\gamma\gamma$	-8.1 - 13.1	-8.1 - 13.1	-7.9 - 12.9
Combination	-5.0 - 12.0	-5.8 - 12.0	-5.3 - 11.5

Limits on spin-0 heavy scalar cross-sections

Run 2:

Run 1:

CMS measurements & ATLAS combination

ATLAS 2019 combination

Improvements due to: larger cross-sections (31fb vs 10 fb), luminosity (36.1/fb vs 17.9/fb), experimental reconstruction

Phys. Lett. B 801 (2020) 135145

Search for non-resonant Higgs boson pair production bb lvlv channel COMPOSITION OF HH EVENTS IN THE SIGNAL REGIONS

- bb+WW/ZZ/ $\tau\tau$ final states
- main backgrounds: Top and $Z/\gamma * + jets$ processes,
- signal selection
 - m_{II}∈(20,60) GeV and
 - m_{bb}∈(110,140)GeV
- DNN classifier trained on $HH \rightarrow bbWW^*$ events
- The classifier produces four outputs p_i (i $\in \{HH, Top, Z-II, Z-\tau\tau\}$).
- The main discriminant $d_{HH} = \ln[p_{HH}/(p_{Top}+p_{Z-II}+p_{Z-\tau\tau})].$

20

14

29

43

62

Conclusions

- New di-boson measurements at the LHC crucial to fully explore the SM SU(2)xU(1) symmetry structure and EW symmetry breaking
 - ATLAS studies move from first observations of rare EW processes to precision measurements
 - Numerous constraints on New Physics in anomalous couplings and using the SMEFT framework
- Interplay between SM and Higgs measurements are starting to be explored through measurements of four leptons invariant mass spectra and EFT fits
- Di-Higgs searches performed in several channels
 - SM Higgs production not yet observed
 - Limits on the Higgs trilinear coupling largely improved
 - Exclusion limits on BSM resonances
- Most measurements statistically limited; improvements are expected at Run3 and HL-LHC
- Extensive work, challenges and opportunities ahead to collect quality data and produce good physics results

Backup

rapidity and pseudorapidity

rapidity

$$y=rac{1}{2}\lnrac{E+p_zc}{E-p_zc},$$

pseudorapidity

$$\eta \equiv -\ln \left[an \left(rac{ heta}{2}
ight)
ight]$$

$$\eta = rac{1}{2} \ln igg(rac{|\mathbf{r}|^2 - |\mathbf{r}|^2}{|\mathbf{p}| - p_{
m L}} igg)$$

central region η=0 η=0.5 η=1 n=1.5 n=2n=2.5 forward =3 region -4 θ beam

In the limit $m \rightarrow 0 \eta \rightarrow y$