Gamow Shell Model description of stretched resonant states

Y. Jaganathen (IFJ PAN),

B. Fornal (IFJ PAN), N. Cieplicka-Oryńczak (IFJ PAN),S. Leoni (INFN), S. Ziliani (INFN)M. Płoszajczak (GANIL)

GSM description of stretched resonances

Y. Jaganathen - IFJ PAN Seminar - Apr 19th

Gamow Shell Model description of stretched resonant states

The Gamow Shell Model (GSM) is an **open quantum system** extension of the traditional Shell Model. It is designed to describe a variety of **structure (bound + unbound)** and **reaction** observables.

Collaborations with experimentalists are just starting. The interplay between theory and experiments can help improve the interaction and make better predictions.

The Framework: The Gamow Shell Model

- **Open-quantum system** extension of the traditional Shell Model
- HO is replaced by a **finite-depth** potential:
 - Woods-Saxon
 - Gamow Hartree-Fock
- S.p. states are the numerical solutions of the one-body radial Schrödinger equation:

$$u_{\alpha\ell j}^{\prime\prime}(r) = \left[\frac{\ell(\ell+1)}{r^2} + \frac{2\mu}{\hbar^2}U(r) - k^2\right]u_{\alpha\ell j}(r)$$
$$U(r) = V_{WS}(r) + V_{so}(r)\vec{\ell}\cdot\vec{s} + U_C(r)$$

N. Michel, W. Nazarewicz, M. Płoszajczak, T. Vertse, J. Phys. G: Nucl. Part. Phys. 36, 013101 (2009)

- Specific **boundary conditions**:
 - Bound states, resonances: $u_{n\ell j}(r) \sim C_+ H_\ell^+(\eta, kr), \quad r \to +\infty$
 - Scattering states (continuum): $u_{k\ell j}(r) \sim C_+ H_\ell^+(\eta, kr) + C_- H_\ell^-(\eta, kr), r \to +\infty$

The Framework: The Gamow Shell Model

- Both correlations and continuum effects are treated on the same footing (Berggren ensemble)
- The discretization of the contours gives rise to a large basis, in which the Hamiltonian *H* is diagonalized
- GSM Cluster Orbital Shell Model (COSM):

$$H \; = \; \sum_{i=1}^{N_v} \left[\frac{\vec{p}_i^2}{2\mu_i} + U(i) \right] \; + \; \sum_{i < j=1}^{N_v} \left[V_{\rm res}(i,j) + \frac{\vec{p}_i \cdot \vec{p}_j}{M_c} \right] \;$$

- Translational invariance but approximate antisymmetry in the laboratory frame
- Exact treatment of the Coulomb interaction
- Diagonalization of *H* gives the *A*-body bound states and resonances.

The Background: A Quantified Gamow Shell Model Interaction for the *p*-shell Nuclei

- An effective N+NN interaction was developed, as a good starting point to describe *p*-nuclei within the *psd*-model space.
- A first application?

The Background: Uncertainty Quantification

- "Remember that all models are wrong. The practical question is how wrong can they be to still be useful". (G.E. Box)
- In Nuclear Theory, all models are phenomenological.
- Systematic model errors (imperfect modeling/missing physics) are often difficult to assess, but the statistical model uncertainties (reasonable domain) are usually quantifiable.

The Background: Uncertainty Quantification

• Within the **linear regression** approximation, UQ is based on the covariance matrix:

The Background: Uncertainty Quantification

- "Remember that all models are wrong. The practical question is how wrong can they be to still be useful". (G.E. Box)
- In Nuclear Theory, all models are phenomenological.
- Systematic model errors (imperfect modeling/missing physics) are often difficult to assess, but the statistical model uncertainties (reasonable domain) are usually quantifiable.
- Linear regression model applied to the interaction showed that many parameters are sloppy. Can different experimental data constrain these parameters?

Pa	rameter	Value	
	S=1 , T=1	-3.2 ± 22.0	
control	S=1 , T=0	-5.1 ± 1.0	
central	S=0 , T=0	-21.3 ± 6.6	
	S=0 , T=1	-5.6 ± 0.5	
spin-orbit	pin-orbit S=1, T=1 -540		
topoor	S=1 , T=1	-12.1 ± 79.5	
lensor	S=1 , T=0	-14.2 ± 7.1	

"Stretched" states

- High-energy states dominated by a single particle-hole component between 2 distant shells
- The excited particle and the hole are coupled to the maximal possible spin value J_{max} = J_p + J_h
- A certain purity of the state is expected as other configurations require at least 2ħω excitations.
- Good states to test the interaction?

The 21.466 MeV M4-resonant state in ¹³C

- J = (7/2⁺, 9/2⁺), T = (3/2, 1/2)
- Decays by emission of protons and neutrons, $\Gamma = 270 \pm 20$ keV.
- Recently been measured at the Cyclotron Centre Bronowice (CCB IFJ PAN), and is being analyzed by N. Cieplicka-Oryńczak (IFJ)
- Challenging for the Gamow Shell Model.

The Model Space

- Model space specifically adapted to describe the M4 state:
 - An effective ⁴He core modeled by a Woods-Saxon + spin-orbit + Coulomb
 - 3 effective holes max. in the ¹²C core
 - *psd* model space, as the *f* shells seem to be negligeable to describe the M4 state

- An effective finite-range NN potential with **central, spin-orbit and tensor terms** similar to the one used within the p-shell.
- The depths of the one-body potential and the 8 parameters of the NN interaction were adjusted to the low-lying spectra of ¹²B, ¹²C, ¹²N, ¹³C, ¹³N, as well as ¹⁴C, ¹⁴N, ¹⁴O
- R.m.s deviation of ~ 450 keV.

Results – Parameters and Uncertainties

Parameter		Value	
Central	S=1, T=1	-6.5 ± 10.0	
	S=1, T=0	-8.9 ± 0.8	
	S=0, T=0	-8.7 ± 5.0	
	S=0, T=1	-2.4 ± 0.5	
Spin-orbit	S=1, T=1	3400 ± 800	
	S=1, T=0	1900 ± 3000	
Tensor	S=1, T=1	44 ± 50	
	S=1, T=0	-47.4 ± 8.2	

- Like in the interaction in the *p*-shell, some parameters remain sloppy.
- They can probably be constrained by experimental data of different kinds (charge/matter radii, EM moments).

Results – Spectra and Configuration Probabilities

State	E _{calc} (MeV)	E _{exp} (MeV)	Main configurations
¹² B, 1-, T=1	-48.832*	-48.659	67%: P: (0p _{3/2}) ³ - N : (0p _{3/2}) ⁴ (1s _{1/2}) ¹
¹² B, 2-, T=1	-50.014*	-49.607	70%: P: (0p _{3/2}) ³ - N: (0p _{3/2}) ⁴ (1s _{1/2}) ¹
¹² B, 2+, T=1	-50.546*	-50.327	67%: P: (0p _{3/2}) ³ - N: (0p _{3/2}) ⁴ (0p _{1/2}) ¹
¹² B, 1+, T=1	-51.420*	-51.288	63%: P: (0p _{3/2}) ³ - N: (0p _{3/2}) ⁴ (0p _{1/2}) ¹
¹² C, 2+, T=1	-47.1(4)	-47.761	34%: P: (0p _{3/2}) ³ (0p _{1/2}) ¹ - N: (0p _{3/2}) ⁴ 34%: P: (0p _{3/2}) ⁴ - N: (0p _{3/2}) ³ (0p _{1/2}) ¹
¹² C, 1+, T=1	-48.2(4)	-48.757	34%: P: $(0p_{3/2})^3(0p_{1/2})^1$ - N: $(0p_{3/2})^4$ 32%: P: $(0p_{3/2})^4$ - N: $(0p_{3/2})^3(0p_{1/2})^1$
¹² C, 2+, T=0	-59.057*	-59.427	33%: P: (0p _{3/2}) ³ (0p _{1/2}) ¹ - N: (0p _{3/2}) ⁴ 33%: P: (0p _{3/2}) ⁴ - N: (0p _{3/2}) ³ (0p _{1/2}) ¹

Potential M4 states	Ε _{calc} , Γ _{calc}	Main configurations	
¹³ C, 7/2+, T=1.48 Ε = -46.9(5) MeV, Γ = 400(500) keV		38% M4 proton, 27% M4 neutron	
¹³ C, 9/2+, T=1.4 Ε = -46.2(7) MeV, Γ = 150(300) keV		24% M4 proton, 41% M4 neutron	

(*) fitted

- Exp: (7/2+, 9/2+), T = (3/2, 1/2), E = -47.347 MeV, Γ = 270 ± 20 keV
- Another T = 3/2 state, **E = -47.585 MeV**, **Γ = 18 keV**

Results – Spectroscopic Factors

7/2+ E = 21.832 MeV, Г = 450 keV, T = 1.48			
12B, 1-, T=1	Х		
12B, 2-, T=1	$S_{p3/2} = 0.005$		
12B, 2+, T=1	$S_{d5/2} = 0.08$ $S_{d3/2} = 0.02$	12C, 2+, T=1	$S_{d5/2} = 0.10$ $S_{d3/2} = 0.02$
12B, 1+, T=1	$S_{d5/2} = 0.14$	12C, 1+, T=1	$S_{d5/2} = 0.25$

9/2+ E = 22.594 MeV, Γ = 150 keV, T = 1.40			
12B, 1-, T=1	х		
12B, 2-, T=1	х		
12B, 2+, T=1	S _{d5/2} = 0.11	12C, 2+, T=1	$S_{d5/2} = 0.41$
12B, 1+, T=1	х	12C, 1+, T=1	Х

of the global decay schemeAccording to the GSM calculation,

Spectroscopic Factors are a decent indicator

¹³C

the M4 state is the 7/2+.

- Our calculation show that the decay to the 2+ in ¹²C is possible.
- Radial overlap integrals are currently being calculated to assess the full theoretical decay scheme

Conclusions and Outlook

- The study of the 21.47 M4-resonant state in ¹³C is a current collaboration between theory and experiment within the IFJ PAN.
- While its decay has recently been measured recently at the Cyclotron Centre Bronowice (CCB IFJ PAN), the Gamow Shell Model offers its first theoretical insight to a so-called stretched state.
- GSM predicts the M4 to be a 7/2+, T=3/2 state.
- It also predicts the possibility of a decay to the 2+ in ¹²C, which demands further experimental investigation.
- Radial overlap integrals are currently being calculated to assess the full theoretical decay scheme.
- This study opens the path for future projects on stretched states in N and/or O, which could be the subject of future experiments.