

Neutrons for polymers

WM2

Coh/Incoh separation SRO in elastomer How-it-works QENS Contamination

Larmor Precession Instrument: NSE SESANS, SERGIS

Dynamic Nuclear Polarizatio

Soft matter with polarised neutrons

Wojciech Zając

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences, Kraków

> ESS Partner & Industry Day Kraków, 25.03.2014

Residual strain in the PU–SiO₂ composite. WANS spectra (polarised neutrons) for PU.

Neutron spin as a measuring probe

Neutrons for polymers

WM2

Coh/Incoh separation SRO in elastomer

How-it-works

QENS Contamination

Larmor Precession Instrument: NSE SESANS, SERGIS

Dynamic Nuclear Polarizatio

- Polarized neutrons offer a unique opportunity of separating, **at the machine level**, coherent from incoherent scattering. See how it works:
 - If \hat{B} $(\vec{I} \cdot \vec{\sigma})$ denotes the interaction operator between the neutron spin and the nuclear spin, then the following holds for the scattering intensity in the spin-flip and non-spin-flip channels:

$$I^{\uparrow\uparrow} = \frac{1}{3} \left|B\right|^2 \mathrm{I}\left(\mathrm{I}+1\right), \qquad \text{and} \qquad I^{\uparrow\downarrow} = \frac{2}{3} \left|B\right|^2 \mathrm{I}\left(\mathrm{I}+1\right)$$

Thus the outgoing scattering intensity from unpolarized nuclear spins is always one third without, and two thirds with flip of the neutron spin from the polarised beam. The coherent scattering I_{coh} and incoherent scattering I_{inc} are linearly related to the measured spin-flip and non-spin-flip scattering:

$$I_{corr}^{\uparrow\downarrow} = \frac{2}{3} I_{spin\ incoh}$$
 and $I_{corr}^{\uparrow\uparrow} = I_{coh} + \frac{1}{3} I_{spin\ incoh} + I_{isotope\ incoh}$

$$I_{coh} = I_{corr}^{\uparrow\uparrow} - \frac{1}{2} I_{corr}^{\uparrow\downarrow}, \quad \text{and} \quad I_{spin\ incoh} = \frac{3}{2} I_{corr}^{\uparrow\downarrow},$$

● Spin-ncoherent scattering always implies neutron spin-flip, while coherent contains a combination of both spin-flip and non-spin-flip events.

Neutron spin as a measuring probe

Neutrons for polymers

WMZ

Coh/Incoh separation SRO in elastomer

How-it-works

QENS Contamination

Larmor Precession Instruments NSE SESANS, SERGIS

Dynamic Nuclear Polarizatio

- Polarized neutrons offer a unique opportunity of separating, **at the machine level**, coherent from incoherent scattering. See how it works:
- If $\hat{B}\left(\vec{I}\cdot\vec{\sigma}\right)$ denotes the interaction operator between the neutron spin and the nuclear spin, then the following holds for the scattering intensity in the spin-flip and non-spin-flip channels:

$$I^{\uparrow\uparrow} = \frac{1}{3} \, |B|^2 \, \mathrm{I} \left(\mathrm{I} + 1\right), \qquad \text{and} \qquad I^{\uparrow\downarrow} = \frac{2}{3} \, |B|^2 \, \mathrm{I} \left(\mathrm{I} + 1\right)$$

Thus the outgoing scattering intensity from unpolarized nuclear spins is always one third without, and two thirds with flip of the neutron spin from the polarised beam. The coherent scattering I_{coh} and incoherent scattering I_{inc} are linearly related to the measured spin-flip and non-spin-flip scattering:

 $I_{corr}^{\uparrow\downarrow} = \frac{2}{3} I_{spin\;incoh} \qquad \text{and} \qquad I_{corr}^{\uparrow\uparrow} = I_{coh} + \frac{1}{3} I_{spin\;incoh} + I_{isotope\;incoh}$

$$I_{coh} = I_{corr}^{\uparrow\uparrow} - \frac{1}{2}I_{corr}^{\uparrow\downarrow}, \quad \text{and} \quad I_{spin\ incoh} = \frac{3}{2}I_{corr}^{\uparrow\downarrow}$$

• Spin-ncoherent scattering always implies neutron spin-flip, while coherent contains a combination of both spin-flip and non-spin-flip events.

The instrument

Neutrons for polymers

WMZ

Coh/Incol separation SRO in elastomer

How-it-works

QENS Contamination

Larmor Precession Instruments NSE SESANS, SERGIS

Dynamic Nuclear Polarizatior

Such opportunity offers the D7 Diffuse Scattering instrument(ILL):

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

45

The INS/QENS spectrum "anatomy"

WM

Coh/Incoh separation SRO in elastomer How-it-work QENS Contamination

armor Precession nstruments NSE SESANS, SERGIS Dynamic

990

EISF $(Q) = \frac{I_{el}(Q)}{I_{el}(Q) + I_{qel}(Q)}$ – an example

Neutrons for polymers

WM

Coh/Incol separation SRO in elastomer How-it-wor

QENS Contamination

Larmor Precession Instrument NSE SESANS, SERGIS

Dynamic Nuclear Polarizatio

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

QENS on PMMA – an particularly nasty case of diffuse coherent scattering

Neutrons for polymers

WM2

Coh/Incoh separation SRO in elastomer

QENS Con-

Larmor Precession Instrument NSE SESANS, SERGIS

Dynamic Nuclear Polarizatio

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

QENS on PMMA – an particularly nasty case of diffuse coherent scattering

Neutrons for polymers

WMZ

Coh/Incoh separation SRO in elastomer How-it-work

QENS Contamination

Larmor Precession Instrument NSE SESANS, SERGIS

Dynamic Nuclear Polarizatio

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

NSE principles

Neutrons for polymers

WMZ

у

Coh/Incoh separation SRO in elastomer How-it-works QENS Contamination

Larmor Precession Instrument

NSE SESANS SERGIS

Dynamic Nuclear Polarizatio In NSE*, Neutron Spins Precess Before and After Scattering & a Polarization Echo is Obtained if Scattering is Elastic

* F. Mezei, Z. Physik, 255 (1972) 145

20

NSE principles

Neutrons for polymers

WMZ

Coh/Incoh separation SRO in elastomer How-it-work QENS Con-

Larmor Precession Instrumen

NSE SESANS

Dynamic Nuclear Polarizatio

The principle of **SESANS**

QENS Contamination

Larmor Precession Instrument

SESANS, SERGIS

Dynamic Nuclear Polarizatio

SESANS, SERGIS

Neutrons for polymers

wмz

Coh/Incoh separation SRO in elastomer How-it-works QENS Con-

Larmor Precession Instruments NSE

SESANS, SERGIS

Dynamic Nuclear Polarizatior

Spin Echo Small Angle Measurement (SESAME) Spin Echo Resolved Grazing Incidence angle Scattering (SERGIS)

Length scales probed by **SESANS**

Neutrons for polymers

WM2

SRO in elastomer How-it-work QENS Con-

Larmor Precession Instruments NSE

SESANS, SERGIS

Dynamic Nuclear Polarization

(Wei-Ren Chen et al., "The Theoretical Foundation of Spin-Echo Small-Angle Neutron Scattering (SESANS) Applied in Colloidal System", UCANS-II Indiana University; July 08th 2011; Bloomington, IN)

Neutrons for polymers

WM2

Coh/Incoh separation SRO in elastomer How-it-works QENS Contamination

Larmor Precession Instrument NSE SESANS, SERGIS

Dynamic Nuclear Polarization The scattering amplitude *a* of thermal neutron, carrying spin s; $(|\mathbf{s}| = \frac{1}{2})$ interacting with a nucleus of spin I (Abragam, Goldman; 1982):

$$a = b + 2B\left(\mathbf{I} \cdot \mathbf{s}\right)$$

The constants b and B are determined by the two eigenvalues $b_{(+)}$ and $b_{(-)}$ of the operator $(\mathbf{I} \cdot \mathbf{s})$, depending on whether \mathbf{I} and \mathbf{s} couple in the channels $I + \frac{1}{2}$ or $I - \frac{1}{2}$. They may be interpreted as spin-independent and $\frac{1}{2}$ of spin-dependent scattering lengths:

$$b = \frac{(I+1)b_{(+)} + Ib_{(-)}}{2I+1}$$
$$B = \frac{b_{(+)} + b_{(-)}}{2I+1}$$

and for the hydrogen atom they are: $b = -3.74 \,\mathrm{fm}$, $B = 29.1 \,\mathrm{fm}$.

Principles of Dynamic Nuclear Polarization

Neutrons for polymers

WMZ

Coh/Incoh eparation SRO in elastomer How-it-works QENS Contamination

Larmor Precession Instruments NSE SESANS, SERGIS

Dynamic Nuclear Polarization We assume a polarized target with polarisation, P_N , along an axis and the neutron beam polarized along the same axis with polarisation P_n . Furthermore, there are no correlations between the relative orientations of two nuclear spins and their relative positions in an unpolarized target. Then the total polarization-dependent coherent and incoherent neutron scattering cross-sections are:

$$\begin{aligned} \sigma_{coh} &= 4\pi \left[b^2 + P_n P_N \cdot 2IbB + P_N^2 I^2 B^2 \right] \\ \sigma_{inc} &= 4\pi \left[I \left(I + 1 \right) B^2 - P_n P_N I B^2 - P_N^2 I^2 B^2 \right] \end{aligned}$$

(J.H. Zhao et al, Physics Procedia 42 (2013) p.39-45)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Spin Contrast Variation

Neutrons for polymers

WMZ

Coh/Incoh separation SRO in elastomer How-it-work QENS Con-

Larmor Precession Instrument NSE SESANS, SERGIS

Dynamic Nuclear Polarization

Scattering vector (Å⁻¹)

Small-angle neutron scattering (SANS) intensity decreased for positive spin polarization and increased for negative spin polarization. (Noda at al., J. Appl. Cryst. 44 3 (2011) p.503-513)