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Functional materials studied with neutrons
(arbitrary, incomplete selection)

Heterostructures (also materials
with competing order parameters)

’""?'f- Photovoltaic

Metal-organic frameworks & materials



Functional materials studied with neutrons
(arbitrary, incomplete selection)

{a) Fower (b) Healing

,Hard” stuff under the spotlight:

structure, dynamics,
coupling mechanisms, etc.

Soft and elastic
functional
(«intelligent»)
materials

now receiving
more and more

~ R attention.
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Domain structure of PU elastomers
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Ceramic—-elastomer composites with 3D
connectivity of phases - introduction

ceramic _elastomer

— composite

—— pOrous ceramics
PNUU elastomer
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Combination of ceramics stiffness and high elasticity of elastomers.
Compressive stress—strain curves. Energy dissipation capabilities.



Fabrication process of ceramic-elastomer
composites

fo vacuum

porous ceramics

elastomer
liquid precursor

Curing of elastomer is carried out
Inside ceramic pores at temperature
elevated up to 120°C

Residual stresses
formation




Aim of studies

B To measure residual stresses in PU cured in ceramic
pores

Experiment Title : Residual stresses in ceramic-elastomer composites
(proposal no. 9-12-107)

Experiment place: D7 - ILL Grenoble (May 2007)

W. Zajgc, A. Boczkowska , K. Babski, K.J. Kurzydtowski, Measurements of
Residual Strains in Ceramic-Elastomer Composites with Diffuse Scattering
of Polarized Neutrons, Acta Materialia 56 (2008) 5964-5971



Characteristic of urea-urethane elastomers
used in this work

Sample MDI/ H/S H Schematic
code (PAE+DCDA) [mol/mol] content macromolecule
[mol/mol] [wt.%] structure
PU125 1.25 0.25 2.3 [(S),(H)],
PU25 2.50 1.50 12.5 {I(S)(H),15[(S)(H)1,},

Hard segments (H) —NH—C|3—NH—C—NH—©7CH24©7NH—C—

Imide group N (|)| |O|

C=N Ureagroup Uretane group

Nitrile group

Y
IjiSoft segments (S) CH@HNOCO(CHZ)ZOCO—KCHZLCOO](CHZ)ZOCONH@

24




Porous ceramic and composites
microstructure and characteristics

Type A Type B

Porous

ceramic
fracture
surface

Open
porosity
~ 40%

Fo’ WD2OMomm 15. 0XV: x 1008 (500um S
o

Powder diameter: < 63um 200-300um

Mean pores size: ~20pm ~70um

Composite
sections

Specific surface

of the interface: 64.5 *3.8 [I/mm] 0.37£0.01 [1/mm]



D7 Diffuse Scattering instrument at ILL -
WANS Study with Polarized Neutrons

Neutron Guide | Double focusing Fermi chopper| | Guide fields | Analysers | Defectors

monchromator

Mezei flipper
Polorizer “
Monitor 1 £57

" pnalyser
Collimator | Be filter Monitor 2

Polarized neutrons offer a unique opportunity of separating, at the
machine level, coherent from incoherent scattering.



Results - coherent neutron scattering spectra
of a composite B and elastomer PU25

O Composite: Cer. B + PU25
Elastomer PU25
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Real space 4 =0.0063 nm, i.e. 2.1%
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Momentum transfer, Q [nm'1]

Scaled and 'zoomed' coherent neutron scattering spectra of type B composite and
pure bulk elastomer PU25. Error bars are smaller than the point size.



Results - coherent neutron scattering spectra
of a composite A and elastomer PU25

O Composite: Cer. A + PU25
<& Elastomer PU25
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Real space 4=0.0063 nm, i.e. 2.1%
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Momentum transfer, Q [nm™']

Scaled and 'zoomed' coherent neutron scattering spectra of type A composite and
pure bulk elastomer PU25. Error bars are smaller than the point size.



Results - coherent neutron scattering spectra
of a composite A & B and elastomer PU25

m  Composite Cer_A + PU25
2.0 H e Composite Cer_B + PU25
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« 'Soft-segment’ peak in both composites of type A and type B ceramics with the
PU25 elastomer.

» Peak width corresponds to the correlation length.

» Broader peak means smaller correlation length inside smaller pores.



Results - coherent neutron scattering spectra
of a composite B and elastomer PU125

¢ Composite: Cer. B + PU125
20 0O | Elastomer PU125
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No deformation in PU125 is visible. Large concentration of structured soft domains.



Magnetorheological elastomers (MRE) -
indroduction

Composites of magnetically permeable particles in non- magnetlc
viscoelastic polymers. S
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They change their properties, shape and size continuously, rapidly
and reversibly under the influence of an applied magnetic field.
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Aim of the studies

B To study the influence of various factors (composition,
magnetic field strength, sample history) upon domain
anisotropy in magnetorheological elastomers.

Experiment Title : Reversible and irreversible effects of magnetic
field upon hard-segmentdomains in magnetorheological
elastomers (proposal no. 1-04-78)

Experiment place: D11 - ILL Grenoble (May 2013)



Materials used in this work

Polyurethane (PU) - polyether polyols VORALUX® 14922 and HF 505
used in a blend with and isocyanate compound HB 6013 (weight ratio:
70:30:23 — PU70/30 or 30:70:23 — PU30/70), supplied by Dow Chemical.

Carbonyl-iron powder (CI) with the particle size 6-9 ym, supplied by Fluka.

Matrix
code

PU70/30
PU70/30
PU70/30
PU70/30
PU70/30
PU30/70
PU30/70
PU30/70

Cl content
[vol.%]

11.5
33
11.5
11.5
11.5
11.5
33
11.5

MF during
curing
[KA/m]

240
240
0
240
240
240
240
240

MF during test

[KA/m]

0/240
0/240
0/240
0/80/240/400
0/240
0/240
0/240
0/80/240/400

No. of cycles

under MF
240 KA/m

0
0
0
50
1000

50



D11 - small angle neutron scattering (SANS)

PMMA frame

Velocity selector Neutron guides Sample Detector
(Monochromator) (Collimators) (position sensifive)

Neutron guides
(Collimators) | ' Diaphragms Evacuated tube (40m)

Lowest momentum transfer & lowest background small-
angle neutron scattering instrument



Results - field dependence of domain anisotropy

Field-induced (240 kA/m) anisotropic response of elastomer domain structure
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Results - field dependence of domain anisotropy

80 kA/M 240 kA/m 400 KA/m
Sample: PU30/70, 11.5vol% Fe, cured in field

along field direction

Selely Geeliug perpendicular to field direction

Model adopted:
two characteristic length scales (a,, a,) as a concentrated polymer-in-gel suspension

1(Q)=1(0),

1

(1+D3+1-Q2a12j

== +1(0), exp(—Q2a§)+ B



Conclusions

Wide Angle Neutron Scattering (WANS) experiment with
polarized neutrons made it possible to detect residual stresses
In SI02—-PU25 ceramic-elastomer composite by measuring
uniform deformation of polymer network through displacement
of a coherent scattering line originating from the soft domains.

In magnetorheological elastomers, apart from expected field
dependence of domain anisotropy, an interesting effect was
observed of enhanced SANS contrast of a sample in magnetic
field. No significant effect of material ,training” (1000 field-
on/field-off cycles prior to experiment), except a very slight effect
in PU30/70, 11.5vo0l% Fe, cured in field.
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