

The versality of low dimensional molecular magnets on examples of magnetocaloric effect and magnetic relaxations.

Piotr Konieczny

Department of Molecular Magnetism NZ37

Kraków 8.04.2021

vertical confinement

lateral confinement

lateral confinement

variety of size

Inorg. Chem. Com. 77, 27-30 (2017)

Angew. Chem. Int. Ed., 43 (16) 2117-2121 (2004)

Building-block approaches

Chem. Commun. 50, 4396-4415 (2014)

Magnetic sponge

Nanoscale

Nature 468, 417–421 (2010)

J. Am. Chem. Soc. 140, 46, 15876-15882 (2018)

The Henryk Niewodniczański Scientific Award Magnetism of low dimensional molecular magnets

Conventional and rotating magnetocaloric effect

- 1. P. Konieczny*, S. Chorazy, et al., Inorg. Chem., 56 (2017) 7089-7098;
- 2. P. Konieczny*, Ł. Michalski, et al., Inorg. Chem., 56 (2017) 2777-2783;
- 3. P. Konieczny*, R. Pełka, et al., Inorg. Chem., 56 (2017) 11971-980;
- 4. M. Fitta*, R. Pełka, **P. Konieczny**, M. Bałanda, Crystals, 9 (2019) 9;

Magnetic relaxations

- 5. P. Konieczny*, R. Pełka, et al., Acta Phys. Pol. A, 131 (2017) 884-886;
- 6. P. Konieczny*, A.B. Gonzalez-Guillén, et al., Dalton T., 48 (2019) 7560-7570;
- 7. Ł. Laskowski, I. Kityk, **P. Konieczny**, O. Pastukh, M. Schabikowski, M. Laskowska*, Nanomaterials, 9 (2019) 764;
- J. Kobylarczyk, M. Liberka, P. Konieczny*, et al., Dalton T., 49 (2020) 300-311;
- 9. P. Konieczny*, R. Pełka, et al., J. Phys. Chem. C, 124 (2020) 7930-7937 ;
- 10. M. Laskowska, O. Pastukh*, P. Konieczny, et al., Materials (2020), 13, 2624.

Other aspects of low dimensional magnetism

- 11. F. Setifi*, P. Konieczny*, et al., J. Mol. Struct., 1149 (2017) 149-154;
- 12. P. Konieczny*, R. Pełka*, et al., Dalton T., 47 (2018) 11438-1144;
- 13. K. Luberda-Durnaś, P. Konieczny, et al., New J. Chem., 42 (2018) 18225-35
- 14. F. Setifi*, Z. Setifi, P. Konieczny, et al., Polyhedron, 157 (2019) 558-566;

NEWS RELEASE 3-JUN-2020

Anisotropy of spin-lattice relaxations in molecular magnets

THE HENRYK NIEWODNICZANSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

Magnetocaloric Effect

heating or cooling of magnetic material as a consequence of changing magnetic field

Why magnetocaloric effect is important?

Scheme of rotating MCE cooling device for liquefaction of helium Why RMCE is interesting?

- simple construction of refrigerator
- o no change of magnetic fieldo high efficient
- permanent magnets as field source

Appl. Phys. Lett. 104, 2014, 232402

MCE and RMCE: low anisotropy

{[**Mn**^{II}(R-mpm)₂]₂[**Nb**^{IV}(CN)₈]}·4H₂O

- \circ magneticaly soft
- \circ ferrimagnet, saturation: 8.99 $\mu_{\rm B}$ /f.u. (Mn↑--↓Nb--↑Mn)
- weak easy plane (*bc*) type anisotropy
- $\circ a^*$ is the hard axis

Low field MCE

Inorg. Chem. 2017, 56, 2777-2783

Magnetic relaxations

Spin-lattice relaxation

Examples

Memory units

Nano. Lett. 17, 6613 (2017)

Sample

Dc magnetic properties - measurements

Temperature dependence

$$\tau_{\rm QTM} = \frac{1 + \eta^2 \Delta E^2 \hbar^{-2}}{4\omega^2 \eta} = \frac{1 + Q_2 (H_0 \cos \theta)^2}{Q_1}$$

1.2 -

Conclusions

- RMCE between easy plane and hard axis
- Inverse MCE can enhance RMCE
- Crucial role of magnetic anisotropy

- Design and construction of a setup for angleresolved ac susceptibility measurements
- Angle evolution of the relaxation time for an SMM
- Evidence of the anisotropy of magnetic relaxations

J. Phys. Chem. C, 124 (2020) 7930-7937 Inorg. Chem., 56 (2017) 7089-7098 Dalton T., 49 (2020) 300-311 Acta Phys. Pol. A, 131 (2017) 884-886 Dalton T., 48 (2019) 7560-7570

THANK YOU FOR YOUR ATTENTION

Pauli's "Hidden Rotation" and the Spinning Electron

