Searches for H→lly decays with the ATLAS detector

Mateusz Dyndal

AGH University of Science and Technology in Krakow

The Higgs boson

It is the only fundamental scalar with spin 0 we have seen so far

Discovery allows to access a new sector in the Lagrangian:

- <u>Scalar-Gauge boson</u> interactions
- Yukawa couplings (new type of interaction)
- <u>Higgs potential:</u> cornerstone of BEH mechanism, not yet probed experimentally

Higgs boson production and decay at the LHC

The ATLAS detector at the LHC

- General-purpose particle physics experiment
 - lacksquare

Designed to exploit the full discovery potential and vast range of physics opportunities that LHC provides

LHC Run 2 period (2015-2018)

- ATLAS experiment has successfully collected ~140 fb⁻¹ luminosity at pp 13 TeV centre-of-mass energy in the full LHC Run 2 period
 - Big thanks to the CERN accelerator team for the excellent LHC performance!

ATLAS detector performance

- Good understanding of the detector is critical
- Reconstruction of physics objects (e, γ , μ , τ , jets, ...) precisely known from careful data-driven calibrations
- Several improvements during the last years using machine learning techniques

Fermionic couplings confirmed: observation of H→bb decay and ttH process

ATLAS and CMS have performed global fit of coupling modifiers

- ~6% uncertainty on Higgs to vector boson couplings
- ~10-15% uncertainty on Higgs to the 3rd generation fermion couplings \bullet
- This includes recent evidence for $H \rightarrow \mu\mu$ decay

Dalitz decay

- Traditionally attributed to mesons decaying to two leptons plus a photon
 - Mediated via virtual photon exchange \bullet
- Famous example: **neutral pion decay**
 - B(π0→γγ) = 0.988 \bullet
 - B(π0→eeγ) = 0.012 lacksquare

Higgs Dalitz decay $(H \rightarrow II\gamma)$

- Very rare decays (**B** < 2×10⁻⁴)
- Several processes contribute to the final state
 - BSM sensitivity through loops
- Diverse final state kinematics
 - **Dedicated measurements are performed for each region** of phase-space

Previous measurements of $H \rightarrow IIy$

• Run 1 and early Run 2 searches for $H \rightarrow II\gamma$ are all statistically limited and consistent with background-only hypothesis

JHEP 10 (2017) 112

Evidence for Higgs boson decays to a low-mass dilepton system and a photon in *p p* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

A search for the $Z\gamma$ decay mode of the Higgs boson in *p p* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

Search for $H \rightarrow II\gamma$ decays with ATLAS

• Rough sketch of analysis procedure:

- Object and event selection + categorisation (**Step 1**)
- Signal and background parameterisations (**Step 2**)
- Simultaneous fit to all categories (**Step 3**) ullet

Step 3

Event preselection

- Search for $H \rightarrow Z\gamma \rightarrow II\gamma$ decay
- Single & di-leptonic triggered events
- Object selection:
 - Muons: Isolated with $p_T > 10$ GeV •
 - Electrons: Isolated with $p_T > 10$ GeV ullet
 - Jets: p_T > 25 GeV
- Select an opposite-sign same flavor lepton pair (ee or $\mu\mu$) + γ
 - $50 < m_{\parallel} < 101 \text{ GeV}$
 - $p_{Ty}/m_{Hy} > 0.12$

VBF $H \rightarrow Z\gamma$ Candidate Event

Event preselection

- Search for $H \rightarrow II\gamma$ decay at low-m_{II}
- Can't rely on regular single-lepton triggers alone
 - Combination of single-I, 2I, γ+I, γγ, γ+2I triggers is used
 - Dedicated merged-ee + γ trigger is also employed
- Trigger efficiency wrt final selection:
 - Muon channels: 96.2%
 - Resolved electron categories: 96.5%
 - Merged electron categories: 99.8%

	٦
_	\neg
	\neg
	\neg
	\neg
_	
	\neg
_	\neg
	\neg
_	
	Τ
	\neg
	\neg
	\neg
	\neg

Event preselection

- Search for $H \rightarrow II\gamma$ decay at low-m_{II}
- Object selection:
 - Photons: Isolated with $p_T > 20$ GeV ullet
 - Muons: Isolated (leading) with $p_T > 3$ (11) GeV \bullet
 - Electrons: Isolated (leading) with $p_T > 4.5$ (13) GeV
 - **Merged-ee**: isolated with $p_T > 20$ GeV
 - Jets: $p_T > 25 \text{ GeV}$
- Select an opposite-sign same flavor lepton pair ($\mu\mu$ or ee or merged-ee) + γ
 - **m**_{II} < **30 GeV** and veto J/Psi and Upsilon mass range
 - Relative p_T cuts: $p_{T,II}/m_{II\gamma} > 0.3$, $p_T(\gamma)/m_{II\gamma} > 0.3$

Merged-ee identification algorithm

Search for H→IIγ decay at low-m_{II}

- Due to the low mass of the dielectron pair they are often collimated
- Requires dedicated identification (PID) to ensure reasonable efficiency is maintained vs angular separation
- Cut-based PID inputs:
 - EM shower shapes
 - Vertex contracted from the 2 selected tracks
 - Vertex-cluster and track-cluster matching requirements
 - Additional cuts to reduce background from single electrons
- MVA cut optimisation is performed

arXiv:2103.10322

- Search for $H \rightarrow II\gamma$ decay at low-m_{II}
- Use $Z \rightarrow II\gamma$ events to perform efficiency measurements

 - Extract efficiency of combined merged-ee PID ullet+ isolation requirements
- Energy calibration

Event kinematics

- In VBF process, valence quarks scatter resulting in a large dijet invariant mass
 - Jets in non-resonant Ilγ are mostly from gluon radiation and have lower invariant masses
- $p_{Tt} = 2|p_{T,II}||p_{T,Y}| \sin \Delta \varphi_{II,Y} / p_{T,IIY}$
 - While correlated with Higgs p_T, p_{Tt} has lower experimental uncertainties & lower correlation with the Higgs boson mass
 - Larger values for signal than the non-resonant backgrounds

Event categorisation

- Search for $H \rightarrow Z\gamma \rightarrow II\gamma$ decay
- Sort events into mutually exclusive categories
 - 6 categories of events starting with VBF-enriched (I) and the pTt categories are more ggF-like (III-VI)
- VBF-enriched classification is BDT-based and uses several kinematic variables:
 - Leading Jet p_T
 - Δφ(Ζ,γ)
 - Δη_{jj}
 - m_{jj}
 - ...

Event categorisation

- Search for $H \rightarrow II\gamma$ decay at low-m_{II}
- For each signature 3 kinematic categories are created (9 categories in total)

VBF-enriched

- >= 2 jets
- m_{ii} > 500 GeV
- Δη_{jj} > 2.7
- $\Delta \phi(II\gamma,jj) > 2.8$ •
- . . .
- High-p_{Tt}
 - !VBF-enriched & $p_{Tt} > 100 \text{ GeV}$
- Low-p_{Tt}
 - Remaining events

arXiv:2103.10322

Background studies

Estimated backgrounds are used for:

- Optimization
- Background fit choice
- Note the final background estimation is from data
- Non-resonant Ilγ (prompt photons)
 - Obtained from MC simulation
- Fake background (jets faking photons or jets faking leptons)
 - Obtained from data control regions
 - Relative fraction is also estimated from data

Background modeling

- Parameterisation of the bkg. shape is performed using parametric functions
 - Choices of functions: exponential, Bernstein, and power functions
- Background function choice
 - Sig+Bkg fit to expected background templates \bullet
 - Functions with low bias and with low degrees of freedom are preferred
 - Any bias in the signal strength is taken as a systematic uncertainty

Category	Function Type	Fit range [GeV]
VBF-enriched	Second-order power function	110–155
High relative $p_{\rm T}$	Second-order exponential polynomial	105-155
ee high p_{Tt}	Second-order Bernstein polynomial	115–145
$ee \log p_{\mathrm{T}t}$	Second-order exponential polynomial	115-160
$\mu\mu$ high $p_{\mathrm{T}t}$	Third-order Bernstein polynomial	115–160
$\mu\mu$ low $p_{\mathrm{T}t}$	Third-order Bernstein polynomial	115–160

Search for $H \rightarrow Z\gamma \rightarrow II\gamma$ decay

Search for $H \rightarrow II\gamma$ decay at low-m_{II}

Channel	Function
μμ VBF-enriched	mα
μμ High-p _{T-Thrust}	mα
μμ Low-pτ-Thrust	e ^{αm+βm×m}
Merged e VBF-enriched	mα
Merged e High-pT-Thrust	mα
Merged e Low-pT-Thrust	e ^{αm+βm×m}
Resolved eVBF-enriched	e ^{αm}
Resolved e High-pT-Thrust	mα
Resolved e Low-pT-Thrust	mα

Signal modeling

- Double-sided Crystal Ball function (DSCB) is used to model the signal in each event category
 - Gaussian core + (asymmetric) power-law tails \bullet
- For $H \rightarrow Z\gamma \rightarrow II\gamma$ analysis muons are corrected for final state radiation by adding EM calorimeter contributions with p_T>1.5 GeV within $\Delta R < 0.15$ of the muon
 - Results in ~3% improvement in mass resolution

Signal regions

• Search for $H \rightarrow Z\gamma \rightarrow II\gamma$ decay

26

• Search for $H \rightarrow II\gamma$ decay at low-m_{II}

27

Results

• Search for $H \rightarrow Z\gamma \rightarrow II\gamma$ decay

- Background-only hypothesis: observed local significance at 125.09 GeV has a p-value of 2.2σ
- Best-fit signal strength (μzγ):
 - Observed $\mu_{Z\gamma} = 2.0 \pm 1.0$
 - Analysis is statistically-dominated
 - Leading systematic uncertainty: background modeling
- Observed upper limit on σ(pp→H)×B(H→Zγ) is 305 fb (3.6 times the SM prediction) at 95% C.L.

Results

Search for $H \rightarrow II\gamma$ decay at low-m_{II}

- Measured fiducial $\sigma(pp \rightarrow H) \times B(H \rightarrow II\gamma)$ (m_{II} < 30 GeV): 8.7 ± 2.8 fb
 - Corresponds to the signal strength $\mu = 1.5 \pm 0.5$
 - Analysis is statistically-dominated, leading systematic uncertainty: background modeling lacksquare
- Significance above background-only hypothesis: 3.2σ
 - First evidence for $H \rightarrow IIy$ decay!

Search for H→lly decays at low-m

VBF $H \rightarrow ee\gamma$ event candidate with merged-ee

ATLAS-CONF-2021-002

The High-Luminosity LHC

- 20 times more integrated luminosity than LHC Run 2 Up to 200 pp interactions per bunch crossing! ullet
- Better detectors, larger acceptance, better triggers
- Improved theory and analysis methods

	2020 2021	2022 2023 2024	4 2025 2026	2027 2028 2029 20	030 2031 20	32 2033 2034
	LHC		High-Luminosity LHC			
	LS2	Run 3	LS3	Run 4	LS4	Run 5
ATLAS and CMS		2 x 10 ³⁴ 300 fb ⁻¹	Detector Upgrade	5-7 x 10 ³⁴ ~1000 fb ⁻¹		5-7 x 10 ³⁴ 3000 fb ⁻¹

Prospects at High-Luminosity LHC (3000 fb⁻¹)

- 3-8% precision of Higgs Br to W/Z, 3rd gen. fermions and muons
- Discovery of $H \rightarrow Z\gamma$ (and $H \rightarrow \gamma^*\gamma$) decays

Prospects at High-Luminosity LHC (3000 fb⁻¹)

- With three-body $H \rightarrow II\gamma$ decay, it is possible to probe CP-violating Higgs couplings

 - More detailed access to loops, BSM coupling \bullet

Lepton forward-backward asymmetry measurements (note $A_{FB}(q^2) = 0$ for SM Higgs boson)

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

Summary

- full LHC Run 2 pp data at 13 TeV (~140 fb⁻¹)
- Evidence for $H \rightarrow II\gamma$ decay at low-m_{II}
 - **3.2σ**, μ=1.5 ±0.5
 - One of the rarest Higgs boson decays with **B=10**-4 ullet
- ~5% of the LHC integrated luminosity has been achieved so far
 - HL-LHC will be able to probe more precisely rare Higgs boson decays
- Stay tuned for new measurements!

ATLAS experiment continues to probe the nature of the Higgs boson using

Backup

Higgs boson observation timeline at the LHC Large Hadron Collider (LHC) HL-LHC

- LHC data gives access to very rare Higgs decays: $B(H \rightarrow \mu\mu) = 2.2 \times 10^{-4}$
- Evidence for $H \rightarrow \mu \mu$ decay
 - ATLAS: **2.0** σ (1.7 σ) obs. (exp.) significance, $\mu = 1.2 \pm 0.6$
 - CMS: **3.0** σ (2.5 σ) obs. (exp.), $\mu = 1.2 \pm 0.4$

37

- channels in both ATLAS and CMS
 - Observed upper limit $B(H \rightarrow inv.) = 0.11$ (95% CL) from recent ATLAS combination

Searches for Higgs to invisible have been performed in VBF, ttH and VH

Higgs coupling measurements - the kappa framework

- Parameterisations of Higgs boson production cross-sections and decay widths as a function of coupling strength modifiers using kappa framework
- Considering leading order contributions only
 - Other assumptions are typically made

$$\kappa_j^2 = \frac{\sigma_j}{\sigma_j^{\text{SM}}} \quad \text{or} \quad \kappa_j^2 = \frac{\Gamma_j}{\Gamma_j^{\text{SM}}}$$

Production	Loops	Main	Effective	Resolved modifier	
		interference	modifier	Resolved modifier	
$\sigma(ggF)$	\checkmark	t-b	κ_g^2	$1.040 \kappa_t^2 + 0.002 \kappa_b^2 - 0.038 \kappa_t \kappa_b - 0.005 \kappa_t \kappa_c$	
$\sigma(\text{VBF})$	-	-	-	$0.733 \kappa_W^2 + 0.267 \kappa_Z^2$	
$\sigma(qq/qg \to ZH)$	-	-	-	κ_Z^2	
$\sigma(gg \to ZH)$	\checkmark	t-Z	$\kappa_{(ggZH)}$	$2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t$ $- 0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$	
$\sigma(WH)$	-	-	-	κ_W^2	
$\sigma(t\bar{t}H)$	-	-	-	κ_t^2	
$\sigma(tHW)$	-	t-W	-	$2.909 \kappa_t^2 + 2.310 \kappa_W^2 - 4.220 \kappa_t \kappa_W$	
$\sigma(tHq)$	-	t-W	-	$2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$	
$\sigma(b\bar{b}H)$	-	-	-	κ_b^2	
Partial decay width					
Γ^{bb}	-	-	-	κ_{h}^{2}	
Γ^{WW}	-	-	-	κ_W^2	
Γ^{gg}	\checkmark	t-b	κ_g^2	$1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$	
$\Gamma^{\tau \tau}$	-	-	-	κ_{τ}^2	
Γ^{ZZ}	-	-	-	κ_Z^2	
Γ^{cc}	-	-	-	$\kappa_c^2 \ (= \kappa_t^2)$	
				$1.589 \kappa_W^2 + 0.072 \kappa_t^2 - 0.674 \kappa_W \kappa_t$	
$\Gamma^{\gamma\gamma}$	\checkmark	t-W	κ_{γ}^2	$+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b$	
				$-0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$	
$\Gamma^{Z\gamma}$	\checkmark	t-W	$\kappa^2_{(Z\gamma)}$	$1.118 \kappa_W^2 - 0.125 \kappa_W \kappa_t + 0.004 \kappa_t^2 + 0.003 \kappa_W \kappa_b$	
Γ^{ss}	-	-	-	$\kappa_s^2 \ (= \kappa_b^2)$	
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^2	
Total width $(B_{i.} = B_{u.} = 0)$					
				$0.581 \kappa_b^2 + 0.215 \kappa_W^2 + 0.082 \kappa_g^2$	
				$+0.063 \kappa_{\tau}^2 + 0.026 \kappa_Z^2 + 0.029 \kappa_c^2$	
Γ_H	\checkmark	-	κ_H^2	$+0.0023 \kappa_{\gamma}^2 + 0.0015 \kappa_{(Z_{\gamma})}^2$	
				$+0.0004 \kappa_s^2 + 0.00022 \kappa_\mu^2$	

Constraints on Higgs boson width

- Indirect measurement from off-shell production in $H \rightarrow ZZ$ channel
- Obs. limit on Higgs width:
 - ATLAS Run 2 (36.1fb⁻¹): < **14.4 MeV**
 - CMS Run 1+2 (77 fb⁻¹): • [0.08, 9.16] MeV
 - SM prediction: **4.1 MeV**

HL-LHC projections: CMS: $4.1^{+1.0}_{-1.1}$ MeV ATLAS: $4.2^{+1.5}_{-2.1}$ MeV arXiv:1902.00134

 $\sigma_{vv \to H \to 4\ell}^{\text{on-shell}} \propto \mu_{vvH}$ and $\sigma_{vv \to H \to 4\ell}^{\text{off-shell}} \propto \mu_{vvH} \Gamma_{H}$

PRD 99 (2019) 112003

PLB 786 (2018) 223

