Kraków, 18.03.2021

Institute of Nuclear Physics Polish Academy of Sciences Department of Experimental Physics of Complex Systems NZ52

Effect of ionizing radiation on prostate cancer cells studied by vibrational spectroscopy

Maciej Roman

Maciej.Roman@ifj.edu.pl

1. Introduction

- influence of ionizing radiation on living organisms
- data analysis
- Raman spectroscopy for analysis of radiation-induced damage / response

2. Results

2.1. Published data

- influence of ionizing radiation on cytoplasm and nucleus
- response to clinical doses
- physicochemical damage vs. early-stage biological response
- lipid droplets in prostate cancer cells and effect of radiation
- nanoscale imaging of lipids

2.2. Current and future tasks

3. Conclusions

Neoplastic diseases and methods of their treatment

 \rightarrow probably the most common cause of death in the 21st century!!!

H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, CA-Cancer J. Clin., 0, 2021, 1.

Ionizing radiation and living matter

- \rightarrow ionization
- \rightarrow excitation

breaking / formation of chemical bonds

 \rightarrow emission

vibrational spectroscopy

Types of damage:

1. primary - caused directly by radiation

2. secondary - caused by knocked-out electrons, emitted photons or generated free radicals (water radiolysis)

a) lipid peroxidation

b) damage to the structure of proteins

c) DNA damage (DNA strands cross-linking, DNA strands cross-linking with proteins, single strand breaks, base damage, sugar damage and the most dangerous DNA double strand breaks)

- •) fatal apoptosis
- •) repairable repair processes (biological response of the cell)

Data analysis

Analysis of characteristic bands

 \rightarrow integral intensity of the bands

Chemometrics (multivariate analysis)

 \rightarrow Principal Component Analysis (PCA)

- reduction of the data dimension (correlations between variables)
- finding principal components that are linear combinations of the input variables (taking into account the variability in the data)

- → regression methods (e.g. Partial Least-Squares Regression, PLSR)
- observable variables (e.g. spectra) and predictor variables (e.g. concentration, radiation dose))
- PLSR finds a linear regression model by projecting the predicted variables and the observable variables to a new space

(d)

dose ~2000 Gy

C.P. Shaw, A. Jirasek, *Applied Spectroscopy*, **63**, 2009, 412.

Effect of ionizing radiation – radiosensitivity

Studies on commercially available cell lines

metastatic prostate cancer cell lines:

DU145 cell line – bone metastasis LNCaP cell line – lymph node metastasis PC-3 cell line – bone metastasis – radioresistant

Q. Matthews, A. Jirasek, J.J. Lum, A.G. Brolo, Phys. Med. Biol., 56, 2011, 6839.

Effect of ionizing radiation on prostate cancer cells (DU145 – radiosensitive)

Q. Matthews, A.G. Brolo, J. Lum, X. Duan, A. Jirasek, *Phys. Med. Biol.*, 56, 2011, 19.

photons 6 MV (5.9 Gy/min)

Effect of ionizing radiation – clinical doses (2 – 10 Gy)

S.J. Harder, Q. Matthews, M. Isabelle, A.G. Brolo, J.J. Lum, A. Jirasek, *Applied Spectroscopy*, **69**, 2015, 193.

RESULTS

Motivation:

- ▶ radioresistance of cell lines \rightarrow radioresistant PC-3 cell line
- ▶ single point measurements (one spectrum per cell) cell heterogeneity \rightarrow Raman mapping
- \blacktriangleright two effects of ionizing radiation \rightarrow radiation-induced damage and biological response
- \blacktriangleright weakness of PCA in analysis of radiation-induced effects \rightarrow PLSR

- Sample preparation
- PC-3 cells (prostate cancer, bone metastasis) on the CaF₂ windows
- ionizing radiation (X-ray, doses: 2, 4, 6, 8, 10, 30, 50 Gy)
- fixation (3.7% PFA) just after irradiation (0h)
- fixation (3.7% PFA) 24h and 48h after exposure
- rinsing/drying
- Raman mapping
- whole cell area
- 532 nm, ~ 7.5 mW
- 20 s, 3 scans
- AFM-IR imaging
- contact mode
- laser power 1%/0.4% (0.12µJ/0.05µJ per cell)
- images (scan rate of 0.06 Hz, 520 pixel resolution (0.04Hz/780 pixels for HR))
- Data analysis
- MatLab (cosmic ray removal, baseline correction, smoothing, normalization, chemometrics (PLSR))

2 µm step size

 \rightarrow Introduction \rightarrow Results \rightarrow Conclusions

PLSR – mean RS spectra from nucleus and cytoplasm (NUC+CYT)

proteins 1

- repair processes

DNA/RNA↓

- damage to genetic material

lipids \downarrow

- stress (lipid release)

MTT – metabolic activity test

M. Roman et al., Sci. Rep., 9, 2019, 8715.

 \rightarrow Introduction \rightarrow Results \rightarrow Conclusions

NUC+CYT

PLSR – mean RS spectra from cytoplasm (CYT)

M. Roman et al., Sci. Rep., 9, 2019, 8715.

 \rightarrow Introduction \rightarrow Results \rightarrow Conclusions

PLSR – mean RS spectra from nucleus (NUC)

PLSR – doses predicted on the basis of mean spectra models (NUC+CYT)

M. Roman et al., Sci. Rep., 9, 2019, 8715.

\rightarrow Introduction \rightarrow Results \rightarrow Conclusions

PLSR – doses predicted on the basis of different models

cytoplasm models

cell nucleus models

separate models: whole cell cytoplasm cell nucleus

X-ray dose [Gy]

0

48h

M. Roman et al., Sci. Rep., 9, 2019, 8715.

\rightarrow Introduction \rightarrow Results \rightarrow Conclusions

PLSR – mean RS spectra for 0h – low doses

M. Roman et al., Spectrochim. Acta A, 2021, in press.

 \rightarrow Introduction \rightarrow Results \rightarrow Conclusions

PLSR – mean RS spectra for 24h – low doses

M. Roman et al., Spectrochim. Acta A, 2021, in press.

\rightarrow Introduction \rightarrow Results \rightarrow Conclusions

PLSR – classification – low doses

Receiver operating characteristic

https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/

Biological assays (MTT and comet)

TP

FP

M. Roman et al., Spectrochim. Acta A, 2021, in press.

biology/cancer-research/learning-center/cancerresearch-protocols/comet-assay.html

 \rightarrow Introduction \rightarrow Results \rightarrow Conclusions

Physicochemical damage vs. early-stage biological response

\rightarrow Introduction \rightarrow Results \rightarrow Conclusions

Physicochemical damage vs. early-stage biological response

\rightarrow Introduction \rightarrow Results \rightarrow Conclusions

Physicochemical damage vs. early-stage biological response

Physicochemical damage vs. early-stage biological response

Correlation coefficients (R²) and polynomial coefficients calculated for linear and quadratic fits

		bi	ological response	physicochemical damage		
		R ²	polynomial coefficients $(b_1 \text{ or } b_1/b_2)$	R ²	polynomial coefficients (b_1 or b_1/b_2)	
linear fit	NUC+CYT	0.856	0.919	0.777	0.918	
	CYT	0.724	0.853	0.729	0.903	
	NUC	0.817	0.898	0.728	0.903	
quadratic fit	NUC+CYT	0.866	1.138/-0.005 0.857		1.607/-0.016	
	CYT	0.751	1.203/-0.009 0.848 1.7		1.727/-0.019	
	NUC	0.827	1.117/-0.005	0.836	1.684/-0.018	

Predicted X-ray doses calculated using the physicochemical damage PLSR models (biological response part) and the biological response PLSR models (physicochemical damage part).

biological response										
applied dose	predicted dose (NUC+CYT)		predicted c	predicted dose (CYT)		predicted dose (NUC)				
[Gy]	mean	SD	mean	SD	mean	SD				
0	54.9	24.8	48.5	18.3	163.2	37.4				
10	67.9	15.7	60.9	11.3	188.9	23.8				
30	70.1	14.0	56.4	2.7	219.6	23.4				
50	55.9	20.8	55.9	14.7	155.3	40.0				
physicochemical damage										
applied dose	predicted dose (NUC+CYT)		predicted c	predicted dose (CYT)		predicted dose (NUC)				
[Gy]	mean	SD	mean	SD	mean	SD				
0	31.2	7.1	-10.6	8.8	41.4	9.6				
10	37.3	6.3	-7.3	8.9	47.9	9.5				
30	36.8	7.1	-6.6	8.8	43.9	6.9				
50	39.4	6.5	-4.6	6.7	45.6	7.6				

 \rightarrow Introduction \rightarrow Results \rightarrow Conclusions

Lipid droplets (LDs) in PC-3 prostate cancer cells

Height above the substrate: A,B – 0 μ m C,D – 2 μ m E,F – 4 μ m G,H – 6 μ m I,J – 8 μ m K,L – 10 μ m

NUC

N – cross-section of the 3D map (M) at a height of 12 µm

M. Roman et al., BBA-Mol. Cell Biol. L., 1865, 2020, 158753.

\rightarrow Introduction \rightarrow Results \rightarrow Conclusions

Lipid droplets (LDs) in PC-3 prostate cancer cells – chemical composition

M. Roman et al., BBA-Mol. Cell Biol. L., 1865, 2020, 158753.

Lipid droplets (LDs) in PC-3 prostate cancer cells – effect of radiation (24h)

M. Roman et al., BBA-Mol. Cell Biol. L., 1865, 2020, 158753.

Lipid droplets (LDs) in PC-3 prostate cancer cells – effect of radiation

decrease – peroxidation, lipid decomposition (lipolysis) increase – apoptosis, endoplasmic reticulum stress

Conclusions:

- slight effect on the chemical composition
- significant influence on the amount of lipids

lipid metabolism as a target of radiotherapy

M. Roman et al., BBA-Mol. Cell Biol. L., 1865, 2020, 158753.

M. Roman et al., Nanotechnology, 30, 2019, 425502.

 \rightarrow Introduction \rightarrow Results \rightarrow Conclusions

Lipid droplets (LDs) in PC-3 prostate cancer cells – AFM-IR

M. Roman *et al., Nanotechnology*, **30**, 2019, 425502.

 \rightarrow Introduction \rightarrow Results \rightarrow Conclusions

Lipid droplets (LDs) in PC-3 prostate cancer cells – AFM-IR

M. Roman *et al., Nanotechnology*, **30**, 2019, 425502.

 \rightarrow Introduction \rightarrow Results \rightarrow Conclusions

Lipid droplets (LDs) in PC-3 prostate cancer cells – AFM-IR

M. Roman *et al., Nanotechnology*, **30**, 2019, 425502.

 \rightarrow Introduction \rightarrow Results \rightarrow Conclusions

Lipid droplets (LDs) in PC-3 prostate cancer cells – AFM-IR

M. Roman *et al., Nanotechnology*, **30**, 2019, 425502.

 \rightarrow Introduction \rightarrow Results \rightarrow Conclusions

Current and future tasks

Cytochrom C release as response to ionizing radiation

<u>Cell sensitizing to ionizing radiation using therapeutic agents</u>

Effect of proton irradiation on prostate cancer cells

Radiation-induced damage to proteins studied by AFM-IR

carried out as part of two Masters theses (students from AGH, supervisor: M. Roman)

CONCLUSIONS

Take-home messages

- 1. Raman spectroscopy as an efficient tool to study the effect of ionizing radiation on cancer cells (even for 0h!, even for low doses!)
- 2. Different response of the cytoplasm and the cell nucleus (necessity of separate analysis of cell organelles)
- 3. PLSR-based classification gives (almost) perfect differentiation between unirradiated and irradiated cells at 6 Gy
- 4. Differentiation between physicochemical damage and early-stage biological response both can be successfully analyzed by RS
- 5. Important role of lipids in the metabolism of prostate cancer cells (accumulation of lipids in lipid droplets)
- Influence of ionizing radiation on lipid droplets (slight on the chemical composition, significant on the amount) - lipid metabolism as a target of radiotherapy
- 7. Usefulness of AFM-IR spectroscopy in the study of lipid droplets in PC-3 cells (nanoscale imaging) confirmation of the results from RS

Thanks to:

- > dr hab. Tomasz P. Wróbel (IFJ till the end of 2019, now NCPS Solaris)
- > dr Agnieszka Panek
- Joanna Wiltowska-Zuber / Klaudia Suchy
- dr Esen Efeoglu (FOCAS, TU, Dublin)
- prof. Hugh Byrne (FOCAS, TU, Dublin)
- > prof. dr hab. Wojciech M. Kwiatek
- dr hab. inż. Czesława Paluszkiewicz, prof. IFJ PAN
- NZ52 staff

Financial and infrastructural support

National Science Center, Poland (*"Sonata"*, no. 2015/19/D/ST4/01943)

➢ The research was performed using equipment purchased in the frame of the project co-funded by the Małopolska Regional Operational Program Measure 5.1 Krakow Metropolitan Area as an important hub of the European Research Area for 2007- 2013, project No. MRPO.05.01.00-12-013/15.

THANK YOU FOR YOUR ATTENTION