

Studies of The Opto-Electronic Chain for The LHCb RICH Upgrade

Igor Ślazyk

University of Ferrara

&

Institute of Nuclear Physics Polish Academy of Sciences

Introduction

During my joint Ph.D. studies between the University of Ferrara (Italy) and the Institute of Nuclear Physics Polish Academy of Sciences (Poland), I had an opportunity to work in the LHCb experiment at CERN.

My research activities focused on the LHCb Ring-Imaging Cherenkov (RICH) detectors upgrade. The ultimate goal of my Ph.D. was to test the newly developed photodetection units, called the **Elementary Cells** (ECs).

For these reasons, I took part in the following activities:

- Development of the experimental test setup for quality control of the ECs,
- Software development of the automated software for the ECs quality assurance,
- Hardware testing and assembly of the ECs,
- Quality control measurements of the ECs,
- Preparation of protocols and manuals,
- Preparation of scripts and offline data analysis,

In this presentation, I would like to show you the overview of the Elementary Cell Quality Assurance (ECQA) performed in Ferrara.

The LHCb Experiment at CERN

Overview

Run2

LHCb deals with heavy flavour physics

- General-purpose detector in forward region
- Goals:
 - \circ Measure CP-violation in b-sector
 - \circ Search for the rare decays
 - Exploit forward production of b-pairs with low angle
- Such studies can help to understand the matter-antimatter asymmetry in our Universe.

LHCb RICH detectors: RICH1 and RICH2

Particle Identification (PID)

• Separate charged hadrons to select decays of interest: kaons, pions and protons

The LHCb Experiment at CERN Upgrade (1)

Reasons for the upgrade:

- More data to further challenge theoretical predictions
- Expose of detectors to radiation damage over years
- Bottleneck of Level-0 hardware trigger (1.1 MHz)
- Change in parameters \rightarrow new geometry

```
LHCb Upgrade:
```

```
LuminosityData acquisition rate\mathcal{L} = 4 * 10^{32} \text{ cm}^{-2} \text{s}^{-1}f = 1 \text{ MHz}\downarrow\downarrow\downarrow\mathcal{L} = 2 * 10^{33} \text{ cm}^{-2} \text{s}^{-1}f = 40 \text{ MHz}
```

- Replacement of L0 hardware trigger with software trigger
- Adjustments in geometry, change in read-out electronics

13 TeV-

2015

2016

LS1

2014

2013

Run 2

2017

2018

2011

Run 1

7 TeV — 8 TeV —

2012

2019

The LHCb Experiment at CERN Cherenkov Radiation

• Charged particles faster than light in a dielectric medium

- Energy emitted as photons: Cherenkov photons
- Cherenkov angle:

$$\cos \theta = \frac{v_p}{v} = \frac{1}{\beta n}, \qquad \beta = \frac{v}{c}$$

• Mass of a particle:

$$\cos \theta = \frac{1}{n} \sqrt{\left(\frac{m}{p}\right)^2 + 1} \rightarrow m = p\sqrt{n^2 \cos^2 \theta - 1}$$

• Different characteristics of particles \rightarrow precise identification

• Most particles in RICH detectors: protons, pions and kaons.

Author: Igor Ślazyk

The LHCb Experiment at CERN Importance of the PID

Branching fraction Channel Data $B_s^0 \to D_s^{\mp} K^{\pm}$ ⋆ signal $(0.23 \pm 0.02) \times 10^{-3}$ PDG m(B_s^0) $(3.04 \pm 0.23) \times 10^{-3}$ $B_s^0 \to D_s^- \pi^+$ background $B^0 \rightarrow D^- \pi^+$ $(2.57 \pm 0.13) \times 10^{-3}$ contamination $\overline{\Lambda}_{b}^{0} \to \overline{\Lambda}_{c}^{-} \pi^{+}$ $(4.9 \pm 0.4) \times 10^{-3}$ Pion MisID Efficiency / % ■ Black : Lumi4 current geometry 10000 : Lumi10 current geometry ▲ Blue : Lumi20 current geometry Red 5200 5400 5600 5800 10 • Green : Lumi20 upgraded geometry $m(D_c^{+}K^{\pm})$ [MeV/ c^2] Data from 2018 Candidates/(2.80 MeV/ c^2) 600E Data PDG m(B_s^0) 500 400E 300 65 70 75 80 85 95 60 90 100 200 Kaon ID Efficiency / % $3.9 * 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ Lumi4 100 $10 * 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ Lumi10 $20 * 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ 5200 5400 5600 5800 Lumi20 $m(D_{c}^{+}K^{\pm})$ [MeV/ c^{2}]

The LHCb RICH Detectors Pre-upgraded

RICH1

- Acceptance: 25 300 mrad
- Momentum range: $\sim 1 60 \text{ GeV/c}$
- Refractive index: 1.0014 (C₄F₁₀) **RICH2**
- Acceptance: 15 120 mrad
- Momentum range: $\sim 15 100 \text{ GeV/c}$
- Refractive index: 1.0005 (CF₄)

Optical system:

- Hybrid Photon Detectors (HPDs)
- Spherical mirrors and flat mirrors

HPDs:

- Vacuum photodetectors
- Accelerated photoelectrons dissipated in silicon
- Each HPD has 1024 pixels (32 × 32 matrix), each pixel's size: 500 μ m × 500 μ m
- Front-End (FE) electronics at 1 MHz bonded to pixel sensor

The LHCb RICH Detectors Upgrade

Overview

The LHCb RICH Detectors Upgrade CLARO

The CLARO chip:

- Designed by: AGH Kraków, INFN Ferrara, INFN Milano Bicocca
- **8 channel** amplifier / discriminator ASIC (0.35 µm CMOS, AMS)

- Single photon counting with MaPMTs
- 40 MHz operation (recovery time < 25 ns)
- Low power consumption (<1 mW per channel)
- Radiation-tolerant
- Mounted on Front-End Board (FEB) -
 - 8 chips per 1 FEB \rightarrow 64 channels

The LHCb RICH Detectors Upgrade Multi-Anode Photomultiplier Tube

MaPMT:

- Two types of MaPMTs designed by Hamammatsu Photonics:
 - **R13742 MaPMT** from R11265 series (1") **R-type**
 - **R13743 MaPMT** from R12699 series (2") **H-type**

- Single photon counting
- Large active area \rightarrow 2.9 mm × 2.9 mm (R-type), 6 mm × 6 mm (H-type)
- 8 \times 8 anode matrix \rightarrow 64 silicon pixels
- Low dark count rate
- 12 stages of dynodes
- Typical gain of $10^6 e^-$ at 1000 V

Singular photomultiplier tube

The LHCb RICH Detectors Upgrade **Elementary Cell**

EC is the basic building unit of the RICH detection system.

DBs with FPGA readout logic and ethernet external connectivity ٠

٠

٠

۰

٠

.

The LHCb RICH Detectors Upgrade Components of Elementary Cell

The LHCb RICH Detectors Upgrade Assembled Elementary Cells

The LHCb RICH Detectors Upgrade Photodetector Columns and Planes

		US	MaP	MIS
	R-Type	H-Type	R-Type	H-Type
RICH1	480	-	1920	-
RICH2	192	384	768	384
$BICH1 \perp BICH2$	672	384	2688	384
	10	56	30	72

Elementary Cell Quality Assurance Experimental Test Setup

Authors: LHCb Ferrara Group (myself included)

Test station:

- Dark Box
- LV power supply
- LED driver
- System controller
- Raspberry Pi
- HV ISEG crate

Facilities:

- Ferrara Station 1 and 2
- Edinburgh Station 3 and 4

- The lowest level: python low-level functions
- Upper level of hierarchy: LabVIEW low-level sub-VIs (LabVIEW commands) based on the python low-level functions
- Communicates with hardware

LabVIEW \rightarrow python \rightarrow system controller \rightarrow FPGAs \rightarrow hardware

Communication:

• Python-LabVIEW interface

Read:

- Read hitcounts, counters, voltages, currents etc. Write:
- Configuration of channels

Functionality:

• Selector of modules, power control, counter/hardware reset etc.

Temperature humidity reading software

Over 30 low-level python functions and corresponding LabVIEW commands

optimeout 2 maxrepeat (5) 5	₹ 0 seqnum 2 0 enable 2 0 cfg 2 0 0	errorcode 0 command enavect (-) 0 0 0 0 0 0 0 0 0 0 0 0 0	error out status code error out status code do source

Elementary Cell Quality Assurance Software – Stage II (2)

Author: Igor Ślazyk

Elementary Cell Quality Assurance Software – Stage III

Authors: Igor Ślazyk Luca Minzoni Edoardo Franzoso

- Another upper level of hierarchy: Standalones based on the LabVIEW low-level sub-VIs
- Initial starting point of test measurements
- Semi-automated DAQ software
- Implemented data analysis scripts

Transition checker:

- Checking if transition is present for all the channels **Current measurements:**
- Measurements of current and voltage

Quality assurance measurements:

- Digital-to-Analog Converter Scan
- Threshold Scan
- Dark Count Rate
- Signal-Induced Noise

Configuration loader:

• Loads optimized configuration acquired from Threshold Scan

Load Number Voltage [V] 0000 850 EC Type NPulses [k] R 100 Station Freq [kHz] S1 10	Number of Steps (256 Full Spectrum) 256 CFG (decimal), used if Configure==TRUE 2855 Configure (true), no configure (false)
	concatenated string
./SIN_analysis	
standard output	error out
return code 0 CFG File for Opt_Thr path 8	old value applied (decimal) if Configure==TRUE SIN step 0

7 standalones

- Final level of hierarchy: ECQA software based on the Standalones and LabVIEW low-level sub-VIs
- Maximum efficiency point of test measurements
- Fully automated DAQ software
- Test parameters initialization for all measurements at the very beginning
- Control and monitoring:
 - High voltage
 - Environmental (temperature and humidity)
- Offline data analysis scripts launched automatically after each test
- Manual operation only in case of critical errors and during the mounting procedure of the ECs and MaPMTs
- Approximate procedure time: 18 hours

Elementary Cell Quality Assurance Software – Stage IV (2)

MAIN CONTROL DAG_STATE exec test STEP_TEST_STATE SCAN PMTS EXEC MANUAL MANUAL	Ime T T T T T T T T T T MAX T MAX	S-Curve FAST NOT DONE Check FEB cur CLARO comm NOT DONE Check BaseBoard HV NOT DONE SCAN PMTS RUNNING S-Curve FAST NOT DONE Check HV EC+PMT NOT DONE S-Curve FAST NOT DONE K-Check HV CFF NOT DONE Keep HV OFF NOT DONE THU conc FODO	TEST LOG 2020-10-28 16:17.22 THR SCAN: HV 1000 THR 10; jobtal_step 118:128; HV step 111; THR step 545 2020-10-28 16:17.22 THR SCAN: HV 1000 THR 8; jobtal_step 119:128; HV step 111; THR step 545 2020-10-28 16:17.22 THR SCAN: HV 1000 THR 8; jobtal_step 120:128; HV step 111; THR step 545 2020-10-28 16:17.22 THR SCAN: HV 1000 THR 6; jobtal_step 120:128; HV step 111; THR step 545 2020-10-28 16:17.22 THR SCAN: HV 1000 THR 6; jobal_step 120:128; HV step 111; THR step 545 2020-10-28 16:17.22 THR SCAN: HV 1000 THR 6; jobal_step 120:128; HV step 111; THR step 546 2020-10-28 16:17.22 THR SCAN: HV 1000 THR 3; jobal_step 120:128; HV step 111; THR step 546 2020-10-28 16:17.22 THR SCAN: HV 1000 THR 3; jobal_step 120:128; HV step 111; THR step 546 2020-10-28 16:17.22 THR SCAN: HV 1000 THR 3; jobal_step 120:128; HV step 111; THR step 546 2020-10-28 16:17.22 THR SCAN: HV 1000 THR 3; jobal_step 120:128; HV step 111; THR step 546 2020-10-28 16:17.23 THR SCAN: HV 1000 THR 3; jobal_step 120:128; HV step 111; THR step 546 2020-10-28 16:17.24 THR SCAN: HV 1000 THR 3; jobal_step 120:128; HV step 111; THR step 546 2020-10-28 16:17.24	Get offset bit 1 - ALREADY DONE
SCAN AND MOUNT PMTs FOLLOWING IN	DICATION	Dark counts OPT THR NOT DONE Dark counts COM THR NOT DONE SIN SCAN OPT THR NOT DONE TEST FINISHED NOT DONE EC CODE RECOVERY NOT DONE EC CODE RECOVERY NOT DONE	2020-10-28 16:21:43 O-HECK STATUE LAST TEST 2020-10-28 16:21:48 CADA LAST SEUP 2020-10-28 16:21:48 STATUS SEUP CHECK 2020-10-28 16:21:48 STATUS SEUP 2020-10-28 16:21:49 STATUS SEUP 2020-10-28 16:21:49 STATUS SEUP 2020-10-28 16:21:49 STATUS SEUP 2020-10-28 16:21:49 STATUS SEUP 2020-10-28 16:22:40 STATUS SEU	Ţ
Dark counts OPT THR S-Curve FAS EC CONFIG Check FEB curr CLARO comm Check Base-Board HV S-Curve HV OFF Cluster Test RESULT SYS CTL OK DONE OK ANALYSIS OK DONE OK SCURVE HV OFF RUNNIG: THR 30A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR 30A; step 1 / 6 SCURVE HV OFF RUNNIG: THR 30A; step 1 / 6 SCURVE HV OFF RUNNIG: THR 30A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR 30A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR 30A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV OFF RUNNIG: THR S0A; step 1 / 6 SCOUVE HV S0A; step 1 / 6 SCOUVE HV S0A	T S-Curve at HV ON Check HV EC+PMT S-Curve at HV OFF Dark counts COM THR THR scan source stop time source stop time source stop time 00:00:00 00:00:00	HV NIGHT SIN SCAN OPT THR SIN SCAN COM THR SURVE DONE SCURVE TOTAL C SCURVE STEP STATUS THR SIA DONE THR SIE DONE THR SEA DONE THR SEA DONE THR SEA DONE THR SEA DONE	PY DEAMON STARTED NET OPEN OK STEP_EXEC STEP_TOTAL STEP_EXEC STEP_EXEC STEP_TOTAL STEP_EXEC STEP_TOTAL STEP_TOTAL <th></th>	
2020 07-29 10-323 - END CONFIG 32811 5YS GTL 2020 07-29 10-323 - SCURYE HV OFF 2020 07-29 10-523 - SCURYE HV OFF 2020 07-29 10-523 - SCURYE HV OFF 2020 07-29 110-523 - SCURYE HV OFF 2020 07-29 110-523 - SCURYE HV OFF 2020 07-29 110-543 - STATE CONFIG 32811 FEB CLK 2020 07-29 111-830 - SCURYE HV OFF 2020 07-29 111-830 - SCURYE HV OFF 2020 07-29 112-830 - SCURYE HV OFF 2020 07-29 112-840 - FLAC OFFIG 32811 FYS GTL 2020 07-29 112-840 - FLAC OFFIG 32811 FYS GTL 2020 07-29 112-840 - STATE CORFIG 32811 FYS GTL 2020 07-29 112-840 - FLAC OFFIG 32811 FYS GTL 2020 07-29 112-840 - FLAC OFFIG 32811 FYS GTL 2020 07-29 112-840 - STATE CORFIG 32811 SYS GTL 2020 07-29 112-840 - FLAC OFFIG 32811 FYS GTL 2020 07-29 112-840 - FLAC OFFIG 32811 SYS GTL 2020 07-29 112-840 - FLAC	RAW DATA FILES	THR 0. NOTIONE 175. R. SI ISCURVE_dg3GA.txt 1 175. R. SI ISCURVE_dg3GA.txt 1 176. R. SI ISCURVE_dg3GA.txt 1 177. R. SI ISCURVE_dg3GA.par.txt 1 177. R. SI IPDF/SCURVE_cg3GA.dist.pdf 1	HV SYSTEM HV STATUS HV STATE HV STATE HV OFF HV OK NONITOR HV OFF HV OK HV mon HV state Item non 1 state Vapeed HV OFF 0.032 450 0 1.42 0.009 4550 0 1.42 0.002 450 0 1.42 0.002 350 0 1.42 0.002 350 0 1.42 0.002 350 0 1.42 0.002 350 1.42 4 HV OFF DISABLED DISABLED 9999 9999 9999 9999 9999 9999 9999 DISABLED 9999 9999 9999 9999 DISABLED HV RUNNING HV STABLE wat state HV SID unning time 1520.35 Stop sool 1 stat stanning 1 stop sool 1 stop sool	HV LOG B2020-1028 16:11:58 - DISCONNECT OLD CONNECTION 2020-1028 16:11:59 - HV QLD CONNECTION - DISCONNECTED OK 2020-1028 16:12:00 - STATE HV MONITOR OK 2020-1028 16:12:00 - STATE HV MONITOR OK 2020-1028 16:12:00 - HV CONNECTED OK 2020-1028 16:12:00 - STATE HV MONITOR OK

Elementary Cell Quality Assurance Software – Stage IV (3)

param error

PARAM OK

CHECK SETUP AND CONFIRM SUBMIT SETUP

SETUP_PARAM

Elementary Cell Quality Assurance Protocol and Assembling Manual (1)

Author: Igor Ślazyk

Elementary Cell Quality Assurance Protocol and Assembling Manual (2)

Author: Igor Ślazyk

Procedure:

- Preparation of readout electronics for assembly
- Quick response (QR) code scanning
- Assembly ECs without MaPMTs
- Mounting of ECs to test stations
- Test measurements on FE read-out electronics
- Preparation of MaPMTs according to grouping schemes
- Installation of MaPMTs with QR code scanning
- MaPMTs training 10 hours
- Test measurements on MaPMTs
- Revision of obtained data
- Preparation of tested ECs for shipments to CERN

Elementary Cell Quality Assurance Mistakes Were Made

Authors: Igor Ślazyk Luca Minzoni Edoardo Franzoso

- Written in Python and C++
- Essential for revising obtained results
- Electronic (CLARO channel) and optical (MAPMT) mapping correlation

Analyses:

- Digital-to-Analog Converter (DAC) Scan
- Threshold (THR) Scan,
- Dark Count Rate (**DCR**),
- Signal Induced Noise (SIN).

y

FEB 0-

FEB 1-

FEB 1-

FEB 0-

FEB 0-

FEB 1-

FEB 1-

FEB 0-

Elementary Cell Quality Assurance Mapping (1)

R-type load (4 R-type ECs)

TOP-	LEFT (0)	TOP-R	IGHT (1)				TOP-L	EFT (0)						-	TOP-RIG	GHT (1)				
UART 1	UART 2	UART 5	UART 6	V			UA	RT 1			l				UA	RT 5				
54 63 <mark>62 61 60 59 58 5</mark>	7 8 16 24 32 40 48 56 64	64 63 62 61 60 59 58 57	16 24 32 40 48 56 64	5	64 63	62	61	60 59	58	57		64	63	62	61	60	59	58	57	
56 55 54 53 52 51 50 4	9 15 23 31 39 47 55 63	56 55 54 53 52 51 50 49	15 23 31 39 47 55 63																	
48 47 46 45 44 43 42 4	1 6 14 22 30 38 46 54 62	48 47 46 45 44 43 42 41	i 14 22 30 38 46 5 4 62	— FEB 0 FEB 0—	56 55	→ 54	53	52 53	L 50	49		56	55	54	53	52	51	<50	49	-FEB 1
40 39 38 37 36 35 34 3	3 5 13 21 29 37 45 53 61	40 39 38 37 36 35 34 33	13 21 29 37 45 53 61																	
	5 + 12 20 28 36 44 52 60	32 31 30 29 28 27 26 25		—FEB 1 FEB 1—	48 47	46	45	44 43	₩ 42	41		48	47	4 46	-45-	-44	43	42	41	—FEB 0
24 23 22 21 20 19 18 1	10 10 27 35 43 51 59		10 10 27 35 43 51 59																	
					40 39	38	37	36 35	5 34	33		40	39	38	37	36	35	34	33	
57 49 41 33 25 17 9 1		► 57 49 41 33 25 17 9 1		•																
58 50 42 34 26 18 10	9 10 11 12 13 14 15 16	58 50 42 34 26 18 10	9 10 11 12 13 14 15 16	•	32 31	. 30	29	28 27	7 26	25		32	31	30	29	28	27	26	25	
59 51 43 35 27 19 11	17 18 19 20 21 22 23 24	59 51 43 35 27 19 11	17 18 19 20 21 22 23 24	—FEB 1																
50 52 <mark>44 36 28 20</mark> 12 ·	25 26 27 28 29 30 31 32	60 52 44 36 28 20 12	25 26 27 28 29 30 31 32	550.0	24 23	3 22	21	20 19	9 18	1/		24	23	22	21	20	19	18	1/	
51 53 <mark>45 37 29 21</mark> 13	33 34 35 36 37 38 39 40	61 53 45 37 29 21 13	33 34 35 36 37 38 39 40	- FEB 0	16 15	14	12	10 14	10			16	15	14	10	10	11	10		
52 54 <mark>46 38 30 22</mark> 14	41 42 <mark>43 44 45 46</mark> 47 48	62 54 46 38 30 22 14 s	41 42 <mark>43 44 45 46</mark> 47 48		10 15	, 14	. 15	12 1.	10	5		10	15	14	15	12	-11	10	5	
53 55 <mark>47 39 31 23</mark> 15	49 50 51 52 53 54 55 56	<mark>63 55</mark> 47 39 31 23 <mark>15 7</mark>	49 50 <mark>51 52 53 54</mark> 55 56	4	0 7			4 2		1	L 4		7	- C	-				1	
64 56 48 40 32 24 16	57 58 59 60 61 62 63 64	64 56 48 40 32 24 16	57 58 59 60 61 62 63 64	•	<u> </u>	ľ	Ŭ	· ·					<u> </u>		Ŭ			-	-	
UART 1	UART 2	UART 5 🔶	UART 6				UA	RT 1							UA	RT 5				
BOTTO	M-I FFT (3)	BOTTOM	-RIGHT (2)				BOTTON	1-I FET (3)						BO	ттом-	RIGHT	(2)			
UART 0	I ↓ UART 3	UART 4	UART 7				UA	RTO				1			UA	RT 4	(~)		1	
54 63 62 61 60 59 58 5	7 8 16,24 32 40 48,56 64	64 63 62 61 60 59 58 57	16 24 32 40 48 56 64																	
56 55 54 53 52 51 50 4	7 15 23 31 39 47 55 63	56 55 54 53 52 51 50 49	15 23 31 39 47 55 63		64 63	62	61	60 59	3 58	57		64	63	62	61	60	59	58	57	
<u>48 47</u> 46 45 44 43 42 4	1 6 14 22 30 38 46 54 62	48 47 46 45 44 43 42 41	. i 14 22 30 38 46 54 62		56 55	- EA	50	E2 E4	E0	40		56		5.4	50	50	51	-50	40	FE 0 1
40 39 38 37 36 35 34 3	3 5 13 21 29 37 45 53 61	40 39 38 37 36 35 34 33	i i 13 21 29 37 45 53 61	-FEBU	50 55	- 34	. 55	52 5.	50	45		50	55	54	55	52	51	-50	45	-FED 1
32 31 30 29 28 2 <mark>7</mark> 26 2	5 + 12 20 28 36 44 52 60	32 31 30 29 28 27 26 25	· 12 20 28 36 44 52 60	FFB 1FFB 1	48 47	46	45	<u>44 4'</u>	• 42	41		48	47	4 16	45	44	42	42	41	EFB 0
24 23 22 21 20 19 18 1	7 8 11 19 27 35 43 51 59	24 23 22 21 20 19 18 17	11 1 9 27 35 43 51 59		40 47	40	45		42	71		40		-	45		40	72	71	
16 15 14 13 12 11 10 9	10 18 26 34 42 50 58	16 15 14 13 12 11 10 9	10 18 26 34 42 50 58		40 39	38	37	36 35	5 34	33		40	39	38	37	36	35	34	33	
0 7 <u>6 5 4 9</u> 2 1	1 9 17 25 33 41 49 57		1 9 17 25 33 41 49 57	•																
5/ 49 41 33 25 1/ 9 1					32 31	30	29	28 23	7 26	25		32	31	30	29	28	27	26	25	
58 50 42 34 20 18 10			9 10 11 12 13 14 15 10	— FEB 1																
50 52 44 36 28 20 12		60 52 44 36 28 20 12	25 26 27 28 29 20 21 22		24 23	22	21	20 19	18	17		24	23	22	21	20	19	18	17	
51 53 45 37 29 21 13	33 34 35 36 37 38 39 40	61 53 45 37 29 21 13	33 34 35 36 37 38 39 40	— FEB 0																
52 54 46 38 30 22 14	41 42 43 44 45 46 47 48	62 54 46 38 30 22 14	41 42 43 44 45 46 47 48		16 15	5 14	13	12 1	l 10	9		16	15	14	13	12	11	10	9	
53 55 <mark>47 39 31 23</mark> 15	49 50 51 52 53 54 55 56	63 55 47 39 31 23 15 Y	49 50 51 52 53 54 55 56																	
54 56 48 40 32 24 16	57 58 59 60 61 62 63 64	64 56 48 40 32 24 16 4	57 58 <mark>59 60 61 62</mark> 63 64	x 🗲	7			- + 3		-1-	-	-0	-7-	6	-5	-		-2	1	\mathbf{v}
UART 0	UART 3	UART 4	UART 7	11			UA	RT 0			ſ				UA	RT 4				λ
			1																	

Elementary Cell Quality Assurance Mapping (3)

-24000 У -22000 ____20000 -18000 -16000 -14000 12000 10000 8000 6000 4000 2000 Х

Igor Ślazyk

Author:

Elementary Cell Quality Assurance Mapping (2)

У У - 5000 -160000 150000 4000 -140000 - 130000 - 3000 120000 2000 - 110000 -100000 1000 90000 30000 Х Х 0 У У 4000 -350000 -3500 -300000 -3000 -2500 -250000 -2000 200000 1500 150000 1000 500 100000 Х Х

Igor Ślazyk

Author:

Elementary Cell Quality Assurance Digital-to-Analog Converter Scan (1)

Elementary Cell Quality Assurance Digital-to-Analog Converter Scan (2)

Elementary Cell Quality Assurance Threshold Scan (1)

• Used for the calibration of the MaPMTs anodes

Elementary Cell Quality Assurance Threshold Scan (2)

y <u>EC_O_PMT_O</u>	EC_0_PMT_1	EC_1_PMT_0	EC_1_PMT_1
	EC_0_PMT_2	EC_1_PMT_3	EC_1_PMT_2
EC_3_PMT_0	EC_3_PMT_1	EC_2_PMT_0	EC_2_PMT_1
EC_3_PMT_3	EC_3_PMT_2	EC_2_PMT_3	EC_2_PMT_2

Elementary Cell Quality Assurance Threshold Scan (3)

I. Ślazyk

Elementary Cell Quality Assurance Dark Count Rate

- Signals after the true signal
- Also referred as after-pulses
- Undesirable effect
- SIN step 14 15 $[325 350ns] \rightarrow signal$
- SIN step 16 255 (350 $6.375 \mu s$] \rightarrow noise

Parameters of interest:

 $SIN_Fraction = \frac{noise}{signal + noise}$

- $S/N Ratio = \frac{signal}{noise}$
- For R-type ECs:
 - Hammamatsu introduced almost 200 so-called SIN-less MaPMTs
 - Since then, all other MaPMTs are referred as SIN-affected MaPMTs

Elementary Cell Quality Assurance Signal Induced Noise (2)

Elementary Cell Quality Assurance Signal Induced Noise (3)

Igor Ślazyk Author:

Elementary Cell Quality Assurance Signal Induced Noise (4)

.

٠

.

Elementary Cell Quality Assurance Shipments

Author: Igor Ślazyk

Conclusions

The ECQA in Ferrara finished successfully

- Experimental test setup proved to be reliable
- Fully automated software developed
- Quality control measurements fully completed
- Offline analysis scripts implemented in the final software
- Protocols and manuals produced
- SIN in SIN-less ECs proven to be substentially decreased
- Quality assurance results sent to CERN's database
- 581 ECs tested and sent to CERN (~55%):
 - 387 ECs of Type-R (~58%)
 - 194 ECs of Type-H (~51%)
- RICH detectors should perform great in the future runs!

Thank you for your attention

My Contribution

- Development and optimization of the test setup for quality control of the Elementary Cells
- Software development of the automated software for the Elementary Cells quality assurance
 - Python-LabVIEW Interface (Stage II)
 - LabVIEW Commands (Stage II)
 - Temperature and Humidity Read-Out Software (Stage II)
 - Standalones (Stage III)
 - Data analysis scripts (Stage III)
- Preparation of the test protocol and Elementary Cell assembly manual
- Hardware testing and assembly of the Elementary Cells
- Mapping tests
- Quality control measurements of the Elementary Cells
- Data analysis of the Elementary Cells quality assurance (SIN-less ECs)
- Minor data analysis on the example of the $B_s^0 \to D_s^{\mp} K^{\pm}$ decays
- Shipments to CERN

Backup

The LHCb Experiment at CERN Upgrade (2)

design

 $\nabla B_s \rightarrow J/\psi \phi$

 $B \rightarrow \pi\pi$

 $\blacktriangle B_s \rightarrow \phi \gamma$

 $B_s \rightarrow D_s K$

1.5

2

2.5

2.4

yield [rel. to 1 1.8 1.8 1.1 1.1

1.6

1.4

1.2

0.8

0.6

1

Trigger

2012

3.5 4 4.5 5 Luminosity [x10³²cm⁻²s⁻¹]

3.5

3

ົງ 10²

Instantaneous Luminosity [10³² cm⁻²

10

LHC Fill 2651

Beam 2

5

Reasons for the upgrade:

- More data to further challenge theoretical predictions
- Expose of detectors to radiation damage over years
- Bottleneck of Level-0 hardware trigger (1.1 MHz)
- Change in parameters \rightarrow new geometry

LHCb Upgrade:

Luminosity

$$\mathcal{L} = 4 * 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$
 \downarrow
 $\mathcal{L} = 2 * 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
Data acquisition rate
 $f = 1.1 \text{ MHz}$
 \downarrow
 $f = 40 \text{ MHz}$

- Replacement of L0 hardware trigger with software trigger
- Adjustments in geometry, change in read-out electronics

20

Fill duration [h]

ATLAS & CMS

LHCb

 $1 \delta \sim 1 - 3\sigma_{beam}$

10

-Beam

15