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Collective behaviour gives rise to

Condensed Matter PhysicsCondensed Matter Physics

Study of complex behaviour of a large number of 
interacting particles

Emergent PropertiesEmergent Properties



  

Strongly Correlated SystemsStrongly Correlated Systems

Gases 

☛ Weakly 
interacting

Motion 
hardly depends on 
position / motion

of others

Lower Temperature
☛ motions get 
more correlated

Below certain T
crystal forms

☛
Strongly 

Correlated 

Excitations 

☛ collective motion 
of many atoms

e.g. Phonons

Increase in
Complexity



  

Strategy: Effective Field Theory Strategy: Effective Field Theory 

Position + motion of each electron (  e- ) correlated with those of all the 
others  ☛ hard to describe

Number / density of e-’s ~1023 ☛ brute force (direct computation) fails

One way of approach ☛ understand long wavelength / macroscopic 
properties using a low-energy (IR) Effective Field Theory (EFT)

Long wavelength ⟺ short distance information averages out                   
                                      / microscopic details irrelevant

A “tractable’’ EFT
☛ enables to identify Universality Phenomena 
☛ simpler than original microscopic  models  +  relate to experiments



  

Non-Fermi Liquids (NFL)Non-Fermi Liquids (NFL)



  

Ground state ☛ characterized by a sharp Fermi 
surface (FS) in momentum space

Quasiparticles ☛ low energy excitations near FS

FS  ☛  jump in fermion 
occupation number n(k) at T=0

Theory of Normal MetalsTheory of Normal Metals

Landau

kF

k

n(k)

Jump = Z

1

0

free

interacting



  

✔ Quasiparticle lifetime diverges close to FS  ☛  Decay rate Г  ω∼ 2 
✔ Overlap between elementary excitations of free and interacting 

systems ☛ quasiparticle weight 0 < Z  ≤ 1

Interactions
...

Coherent part of
single-particle Green’s function

Quasiparticles: Emergent Entities in FLQuasiparticles: Emergent Entities in FL



  

Ground state adiabatically connected to the non-interacting problem

Quasiparticles                         free system excitations

Temperature (T) dependence of thermodynamic & transport properties 
similar to free fermions

A complicated problem reduced to a simpler oneA complicated problem reduced to a simpler one

Manifestation of FLManifestation of FL

one-to-one



  

Electrons + Bosons

Low energy QFT

Massive

 Boson

Massless

 Boson

Long-lived 
quasiparticles 

  

☛ FL

No quasiparticle
   

☛ non-Fermi liquid
(NFL)

Breakdown of FL TheoryBreakdown of FL Theory

Ordered
Phase

Disordered
Phase

Strange
Metal

Non-Fermi
Liquid

=

Bosonic order parameter
massless at 

Quantum Critical Point
(QCP)

mediates

strong
interactions

e.g. Antiferro order, 
nematic order, 
charge density order,
gauge fields ...



  

States with 

 ❶ Sharp FS  
 +

 N❷ o Landau quasiparticles

Critical Fermi SurfaceCritical Fermi Surface

QCPs associated with onset of order, emergent gauge fields, ...



  

[ Senthil (2008) ]
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Interacting Landau FL 

☛ discontinuity 0 < Z < 1
at kF

Phase where FS disappears

☛ n(k) smooth everywhere

QCP

☛ n(k) continuous at kF

discontinuity replaced 
by kink singularity 

Z < 1

k

k

k

Origin of critical FS  Origin of critical FS  ☛☛    Z vanishes continuously Z vanishes continuously 
everywhere on FSeverywhere on FS

k

k

k

kF

kF

kF

FS Disappears at QCPFS Disappears at QCP



  

Recipe for NFL as fermion-boson coupling becomes strong in 2d, 
even if bare coupling is weak  ☛ Z → 0  
☛ quasiparticles destroyed

Attempt to describe NFL as

FS + Gapless Order Parameter 
fluctuations

FS away from QCP
FL

FS at QCP
NFL

FS + Massless BosonFS + Massless Boson



  

Phase diagram of high-Tc cuprates

Non-Fermi Liquid (NFL)

metals

Where do NFLs Appear?Where do NFLs Appear?



  

NFLs: How to Explain Theoretically?NFLs: How to Explain Theoretically?

QFT
Dimensional Regularization + Renormalization Group

We developed a novel analytical frameworkWe developed a novel analytical framework

[  IM IM & S-S Lee, PRB (2015)  ]

Our controlled approximation allowed to compute

critical exponents, optical conductivity, …



  

How to Explain Theoretically?How to Explain Theoretically?

Fermi line in 
3d mom space

Adding extra 
dimensions  ⊥  FS

suppress qtm 
fluctuations 

Find upper critical dimension dc 

☛ well-known tool from Statistical Mechanics / QFT 

d > dc 
 described by mean-field theory (FL) 

 dphys ≤  dc ☛ mean-field theory inapplicable 

☛ perturbative expansion in  ϵ = dc - dphys  

FS of 
2d metal

A controlled approx. to determine critical scalings by
dimensional regularization



  

Order Parameter Á ☛ Real Scalar Boson                            

       [ YBa2Cu3Oy (Cuprate), Sr3Ru2O7 (Ruthenate), Pnictides ]

FS has Z4 sym

Applications: (1) Ising-Nematic QCPApplications: (1) Ising-Nematic QCP

Massless
at QCP

Tuning
parameter

Te
m
pe
ra
tu
re

FS has Z2 sym



  

1d FS fluctuations
effectively local

 Optical conductivity

( )  σ ω ∼ ω−2/3 

☛ close to ω−0.65 found in expts. 
on optimally doped cuprates

[ A. Eberlein, IMIM, & S. Sachdev, 
PRB (2016)  ]

Results: 2d Ising-Nematic QCPResults: 2d Ising-Nematic QCP

Ordered
Phase

Disordered
Phase

Strange
Metal

Non-Fermi
Liquid

=

Massless Boson at 

Quantum Critical Point



  

Results: 2d Ising-Nematic QCPResults: 2d Ising-Nematic QCP

Competition between
non-Fermi liquid phase 

& 
pairing instability at T=0

 Superconductivity (SC) wins

[  IMIM, PRB (2016) ]
 

Quantum Critical Point 

masked by superconducting

(SC) dome

Ordered
Phase

Disordered
Phase

SC

Strange
Metal

Non-Fermi
Liquid

=



  

2d FS fluctuations
non-local

☛ entangled all over the FS

Results: 3d Ising-Nematic QCPResults: 3d Ising-Nematic QCP

 Fluctuations less violent
than 1d FS

 Ultraviolet / Infrared mixing

  ≥ 2-loop corrections vanish

[  IMIM & S-S Lee, PRB (2015) ]

[  IMIM, EPJB (2016) ] 



  

Applications: (2) FFLO-Normal Metal QCPApplications: (2) FFLO-Normal Metal QCP

FFLO  ☛ Cooper pair with

finite momentum QFFLO

Magnetic field splits FS’s 

☛ QCP between 2d metal & FFLO phase

[ F. Piazza, W. Zwerger, P. Strack, PRB 93, 085112 (2016) ]

                 Computed  critical properties of the stable NFL
     

                    [ D. Pimenov, IM, F. Piazza, M. Punk, PRB 98, 024510 (2018) ]

κ-(BEDT-TTF)2Cu(NCS)2

Potentially naked / unmasked QCP  ☛  scaling regime observable 
down to arbitrary low T



  

Technical Details Technical Details 
forfor

Ising-Nematic QCPIsing-Nematic QCP



  

Generalize to (m-dim FS) + Q=0 Scalar BosonGeneralize to (m-dim FS) + Q=0 Scalar Boson

Fermi Sea

Fermi Sea

Circular FS (m=1) 

☛ fermions in different patches

decoupled except 

antipodal points

Not true for 

m-dim FS 

with m > 1

Size of FS ( kF ) enters as a 
dimensionful parameter

Time-Reversal Invariance assumed



  

m = 1 
 
☛ observables local in mom space (e.g. Green’s fns) can be extracted 

from local patches
 
☛ emergent locality

[  D. Dalidovich & S-S. Lee, Phys. Rev. B 88, 245106 (2013) ]

m > 1 ☛ UV/IR mixing ☛ low-energy physics affected by gapless modes on 
entire FS ☛ size of FS ( kF ) modifies naive scaling coming from patch 

description ☛ kF becomes a ‘naked scale’
[  IM IM & S-S Lee, Phys. Rev. B 92, 035141 (2015)  ]

Significance of mSignificance of m

Weaker
quantum 

fluctuations

More entanglement of gapless modes

m (FS dim)

d (space dim)



  

At a chosen point K* on FS : kd-m  ⊥ local Sm  
☛  its magnitude 

measures deviation from kF 

L(k) = ( kd-m+1 , kd-m+2 ,…, kd )  ☛ tangential along the local Sm
 

Patch of m-dim FS 
of arbitrary shape

Coordinate Set-upCoordinate Set-up

K*K*
d = dphys = m + 1



  

right (left) moving fermion 
with flavour  j=1,2,...,N

Fermions on Antipodal PointsFermions on Antipodal Points
Time-Reversal Invariance assumed



  

2 halves of m-dim FS 
+ massless boson 

in d space
& one time dim

Effective ActionEffective Action

d = dphys = m + 1



  

Interpret |L(k)| as a
continuous flavour 

☛ Each (m+2)-d spinor can be viewed 

as a (1+1)-d Dirac fermion

Action in terms of Dirac FermionsAction in terms of Dirac Fermions



  

Add extra spatial dimensions ⊥ L(k)

 ☛  d > dphys 

Embed FS in Higher DimensionsEmbed FS in Higher Dimensions



  

Λ is implicit UV cut-off with K, k
d-m

 << Λ  << k
F

k
F  ☛  sets FS size 

Λ   ☛  sets the largest momentum fermions can have  ⊥ FS  

RG flow  ☛ change Λ & require low-energy observables independent 
of Λ

Fix m & tune d towards d
c
 at which fermion self-energy diverge 

logarithmically in  Λ ☛ access NFL perturbatively in ϵ = dc - (m+1)  

Energy ScalesEnergy Scales



  

Upper critical dim ☛

Scaling dim of e = 1 - d / 2 + m / 4

e has positive scaling dimension at dc for 1 < m < 2

☛ cannot be the control parameter in perturbative loop expansions

 
has scaling dimension [ m + 3/(m + 1) - d ] (m+1)/ 3 that vanishes at dc
☛ effective coupling that is control parameter in loop expansions

dc = 3   for ( m = 2, dphys = 3 )

dc = 5/2   for ( m = 1, dphys = 2 )

Critical DimensionCritical Dimension



  

Dynamical critical exponent

 Anomalous dimensions for 
       fermions & boson

Effective coupling 
control parameter 

in 
loop expansions

Fixed points
of beta-function 

Interacting Fixed Point

One-Loop ResultsOne-Loop Results



  

For m > 1  ☛ kF  suppressed ☛  no correction

For m = 1  ☛ UV-finite correction 

Two-Loop Boson Self-EnergyTwo-Loop Boson Self-Energy



  

Two-Loop Fermion Self-Energy  Two-Loop Fermion Self-Energy  

For m > 1  ☛  

☛  no correction

For m = 1  ☛ UV-divergent



  

FL unstable to arbitrary weak -ve interaction FL unstable to arbitrary weak -ve interaction 
in BCS channel leading to Cooper pairs  in BCS channel leading to Cooper pairs  

☛☛  How about a critical FS ?  How about a critical FS ?

Pairing Instabilitites Pairing Instabilitites of Critical FS of Critical FS 

[ IMIM, Phys. Rev. B 94, 115138 (2016) ]



  

Add relevant 4-fermion termsAdd relevant 4-fermion terms
For simplicity, we consider For simplicity, we consider s-waves-wave case with  case with 22 flavours flavours

Superconducting Instability Superconducting Instability 

coupling constant 



  

Feynman DiagramsFeynman Diagrams



  

Coupled Beta-Functions for VCoupled Beta-Functions for VSS & e & eeffeff

Scatterings in pairing channel enhanced by volume of FS ~ ( kF
 )

m/2
 

 Effective coupling that dictates potential instability :

        marginal at d = m + 1

Aim  ☛ study how eeff affects pairing instability 



  

Beta-Functions for Beta-Functions for VVSS & e & eeffeff



  

Coupled Beta-Functions for Coupled Beta-Functions for VVSS  & e & eeffeff

RG flows to VRG flows to VSS  ➜➜ -  - ∞∞ for any initial  for any initial VVSS

☛ ☛ More susceptible to pairing than FL (More susceptible to pairing than FL (ee e f fe f f  = 0 = 0 ))

e
e
f
f

e
e
f
f

VS   kF
m /2

VS   kF
m /2

d  =2,   m  =1 d  =3,   m  =2



  

Fermi SurfaceFermi Surface
++

Transverse Gauge Field(s)Transverse Gauge Field(s)



  

Values of dc & critical exponents same as Ising-nematic case

[ IMIM, Phys. Rev. Research 2, 043277 (2020) ]

Fermi Surface + U(1) Gauge Field Fermi Surface + U(1) Gauge Field 



  

First fermion couples to the gauge fields ac & as as ( ec
 ac + es

 as )

Second fermion couples as ( ec
 ac - es

 as )

At one-loop, beta functions for the effective coupling constants 

give a fixed line  ( ec
eff + es

eff )  ∝ ϵ 

m > 1 ☛  fixed line feature survives at generic loops
[ IMIM, Phys. Rev. Research 2, 043277 (2020) ]

m = 1 ☛ fixed line feature breaks at three-loop
[ IMIM, Phys. Rev. Research 2, 043277 (2020) ]

2 Fermion Flavours + U2 Fermion Flavours + U cc(1) x U(1) x U ss(1)(1)

Model for QCPs for Mott insulator to metal & metal to metal transitionsModel for QCPs for Mott insulator to metal & metal to metal transitions

[ L. Zou & D. Chowdhury, Phys. Rev. Research 2, 023344 (2020) ]



  

EpilogueEpilogue

RG analysis for critical FS ☛ scaling behaviour of NFL states in a 
controlled approximation

m-dim FS with its co-dim extended to a generic value ☛ stable NFL fixed 
points identified using  ϵ = dc - dphys as perturbative parameter

Pairing instability as a fn of dim & co-dim of FS
☛ superconductivity masks QCP

Key point ☛  kF enters as a dimensionful parameter unlike in
relativistic QFT  ☛  modify naive scaling arguments

Effective coupling constants
☛ combinations of original coupling constants & kF



  

Thank you for your attention !
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