Theoretical Frameworks for Non-Fermi Liquids

IPSITA MANDAL

THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

Condensed Matter Physics

Study of complex behaviour of a large number of interacting particles

Collective behaviour gives rise to

Emergent Properties

Strongly Correlated Systems

Gases • Weakly interacting

Motion hardly depends on position / motion of others

Increase in Complexity Lower Temperaturemotions get more correlated

Below certain T crystal forms

> Strongly Correlated

Excitations Collective motion of many atoms e.g. Phonons

Strategy: Effective Field Theory

- Position + motion of each electron (e) correlated with those of all the others hard to describe
- Number / density of e⁻'s ~10²³ riangle brute force (direct computation) fails

- A "tractable" EFT
 - enables to identify Universality Phenomena
 - simpler than original microscopic models + relate to experiments

Non-Fermi Liquids (NFL)

Theory of Normal Metals

Fermi Liquid (FL) - A finite density of weakly interacting fermions does not depend on specific microscopic details

Ground state characterized by a sharp Fermi surface (FS) in momentum space

Landau

Quasiparticles low energy excitations near FS

Quasiparticles: Emergent Entities in FL

Coherent part of single-particle Green's function

Interactions

$$G_R(\omega, \mathbf{k}) = \frac{Z}{\omega - v_F \, k_\perp - k_\parallel^2 + i \, \Gamma}$$

 $\omega = E - E_F, \quad k_\perp = k - k_F$

Quasiparticles • collective low energy quantum oscillations

- ✓ Quasiparticle lifetime diverges close to FS ← Decay rate $\Gamma \sim \omega^2$

Manifestation of FL

- Ground state adiabatically connected to the non-interacting problem
- Quasiparticles
 Quasiparticles
 Gree system excitations
- Temperature (T) dependence of thermodynamic & transport properties similar to free fermions

- $^{>}$ Resistivity $ho \propto T^2$
- > Specific heat << T</p>
- $^{\succ}$ Im (self energy Σ) $\propto \omega^2$

A complicated problem reduced to a simpler one

Breakdown of FL Theory

Critical Fermi Surface

States with

1 Sharp FS + 2 No Landau quasiparticles

QCPs associated with onset of order, emergent gauge fields, ...

FS Disappears at QCP

Origin of critical FS 🗢 Z vanishes continuously everywhere on FS

[Senthil (2008)] n(k) **Ground state momentum distribution Interacting Landau FL** discontinuity 0 < Z < 1</p> Z < 1 at k_F k \mathbf{k}_{F} n(k) **Phase where FS disappears** n(k) smooth everywhere k k_₽ n(k) QCP n(k) continuous at k_F discontinuity replaced by kink singularity k k_F

FS + Massless Boson

Recipe for NFL as fermion-boson coupling becomes strong in 2d, even if bare coupling is weak $rightarrow Z \rightarrow 0$ rightarrow quasiparticles destroyed

Attempt to describe NFL as

FS + Gapless Order Parameter fluctuations

Where do NFLs Appear?

Phase diagram of high-T_c cuprates

NFLs: How to Explain Theoretically?

We developed a novel analytical framework

QFT Dimensional Regularization + Renormalization Group

[IM & S-S Lee, PRB (2015)]

Our controlled approximation allowed to compute critical exponents, optical conductivity, ...

How to Explain Theoretically?

A controlled approx. to determine critical scalings by dimensional regularization

- Find upper critical dimension **d**_c
 - well-known tool from Statistical Mechanics / QFT
- d > d_c described by mean-field theory (FL)
- d_{phys} ≤ d_c ← mean-field theory inapplicable
 ← perturbative expansion in ∈ = d_c d_{phys}

Applications: (1) Ising-Nematic QCP

Order Parameter ϕ - Real Scalar Boson

[YBa₂Cu₃O_y (Cuprate), Sr₃Ru₂O₇ (Ruthenate), Pnictides]

Results: 2d Ising-Nematic QCP

Results: 2d Ising-Nematic QCP

Competition between non-Fermi liquid phase & pairing instability at T=0 • Superconductivity (SC) wins

Quantum Critical Point masked by superconducting (SC) dome

Results: 3d Ising-Nematic QCP

2d FS fluctuations non-local entangled all over the FS

 Fluctuations less violent than 1d FS

- Ultraviolet / Infrared mixing
- ► ≥ 2-loop corrections vanish
 - [IM & S-S Lee, *PRB* (2015)] [IM, *EPJB* (2016)]

Applications: (2) FFLO-Normal Metal QCP

Magnetic field splits FS's • QCP between 2d metal & FFLO phase

FFLO \clubsuit Cooper pair with finite momentum Q_{FFLO}

[F. Piazza, W. Zwerger, P. Strack, PRB 93, 085112 (2016)]

Potentially naked / unmasked QCP 🖝 scaling regime observable down to arbitrary low T

> Computed critical properties of the stable NFL [D. Pimenov, IM, F. Piazza, M. Punk, PRB 98, 024510 (2018)]

Technical Details for Ising-Nematic QCP

Generalize to (m-dim FS) + Q=0 Scalar Boson

Low energy limit 🗢 Fermions scatter tangentially

Time-Reversal Invariance assumed

Fermi Sea

Circular FS (m=1) fermions in different patches decoupled except antipodal points

Not true for

m-dim FS

with m > 1

Size of FS (k_F) enters as a dimensionful parameter

Significance of m

- from local patches e emergent locality [D. Dalidovich & S-S. Lee, *Phys. Rev. B* 88, 245106 (2013)]
- m > 1 UV/IR mixing low-energy physics affected by gapless modes on entire FS size of FS (k_F) modifies naive scaling coming from patch description k_F becomes a 'naked scale'
 [IM & S-S Lee, *Phys. Rev. B 92, 035141 (2015)*]

Coordinate Set-up

 $d = d_{phys} = m + 1$

 k_{d-m}

L_(k)

K*

κ₋

Patch of m-dim FS of arbitrary shape

- At a chosen point K* on FS : k_{d-m} ⊥ local S^m ← its magnitude measures deviation from k_F
- $L_{(k)} = (k_{d-m+1}, k_{d-m+2}, ..., k_d) rackstarrow tangential along the local S^m$

Fermions on Antipodal Points

Time-Reversal Invariance assumed

k ^{Ψψ}+,j K*

-K*/

 $\psi_{+,j}$ $\psi_{-,j}$ $-k_{d-m} \equiv k_1$

 $\psi_{+,j}\left(\psi_{-,j}\right)$

right (left) moving fermion with flavour j=1,2,...,N

Effective Action

2 halves of m-dim FS + massless boson in d space & one time dim

$$S = \sum_{s=\pm,j} \int \frac{d^{m+2}k}{(2\pi)^{m+2}} \psi^{\dagger}_{s,j}(k) \left[i k_0 + s k_{d-m} + \mathbf{L}^2_{(k)} + \mathcal{O}\left(|\mathbf{L}_{(k)}|^3 \right) \right] \psi_{s,j}(k)$$

$$1 \int d^{m+2}k \int \mathbf{I}_{(k)} d^{m+2}k \int \mathbf{I$$

$$+ \frac{1}{2} \int \frac{a}{(2\pi)^{m+2}} \left[k_0^2 + k_1^2 + \mathbf{L}_{(k)}^2 \right] \phi(-k) \phi(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm,j} \int \frac{d^{m+2}k \, d^{m+2}q}{(2\pi)^{2m+4}} \phi(q) \, \psi_{s,j}^{\dagger}(k+q) \, \psi_{s,j}(k)$$

Action in terms of Dirac Fermions

$$\Psi_j(k) = \begin{pmatrix} \psi_{+,j}(k) \\ \psi_{-,j}^{\dagger}(-k) \end{pmatrix}$$

Interpret |**L**_(k)| as a continuous flavour

Each (m+2)-d spinor can be viewed

as a (1+1)-d Dirac fermion

$$S = \sum_{j} \int \frac{d^{m+2}k}{(2\pi)^{m+2}} \bar{\Psi}_{j}(k) \,\mathrm{i} \left[\gamma_{0} \,k_{0} + \gamma_{1} \left(k_{d-m} + \mathbf{L}_{(k)}^{2} \right) \right] \Psi_{j}(k)$$

$$+ \frac{1}{2} \int \frac{d^{m+2}k}{(2\pi)^{m+2}} \mathbf{L}_{(k)}^2 \phi(-k) \phi(k) + \frac{\mathrm{i} e}{\sqrt{N}} \sum_j \int \frac{d^{m+2}k \, d^{m+2}q}{(2\pi)^{2m+4}} \phi(q) \, \bar{\Psi}_j(k+q) \, \gamma_{d-m} \Psi_j(k)$$

Embed FS in Higher Dimensions

Add extra spatial dimensions $\perp L_{(k)}$ $rightarrow d > d_{phys}$ $k_{0} \rightarrow \mathbf{K} \equiv (k_{0}, k_{1}, \dots, k_{d-m-1})$ $\gamma_{0} \rightarrow \Gamma \equiv (\gamma_{0}, \gamma_{1}, \dots, \gamma_{d-m-1})$ $\gamma_{1} \rightarrow \gamma_{d-m}$ $\delta_{k} \equiv k_{d-m} + \mathbf{L}_{(k)}^{2}$

$$S = \sum_{j} \int \frac{d^{d+1}k}{(2\pi)^{d+1}} \bar{\Psi}_{j}(k) \operatorname{i} \left[\mathbf{\Gamma} \cdot \mathbf{K} + \gamma_{d-m} \,\delta_{k} \right] \Psi_{j}(k)$$

$$+ \frac{1}{2} \int \frac{d^{d+1}k}{(2\pi)^{d+1}} \mathbf{L}_{(k)}^2 \phi(-k) \phi(k) + \frac{\mathrm{i} e}{\sqrt{N}} \sum_j \int \frac{d^{d+1}k \, d^{d+1}q}{(2\pi)^{2d+2}} \phi(q) \, \bar{\Psi}_j(k+q) \, \gamma_{d-m} \Psi_j(k)$$

Energy Scales

- Λ is implicit UV cut-off with K, $k_{d-m} << \Lambda << k_{F}$
- k_F sets FS size
 - \land sets the largest momentum fermions can have \bot FS
- RG flow change A & require low-energy observables independent of A
- Fix m & tune d towards d_c at which fermion self-energy diverge logarithmically in $\Lambda \sim access$ NFL perturbatively in $\epsilon = d_c (m+1)$

Critical Dimension

• Upper critical dim • $d_c = m + \frac{3}{m+1}$

$$d_c$$
 = 3 for (m = 2, d_{phys} = 3)
 d_c = 5/2 for (m = 1, d_{phys} = 2)

- Scaling dim of e = 1 d/2 + m/4
- e has positive scaling dimension at d_c for 1 < m < 2
 - cannot be the control parameter in perturbative loop expansions

$$e_{eff} = e^{\frac{2(m+1)}{3}} / \tilde{k}_F^{\frac{(m-1)(2-m)}{6}} \qquad (\tilde{k}_F = k_F / \Lambda)$$

has scaling dimension [m + 3/(m + 1) - d] (m+1)/ 3 that vanishes at d_c • effective coupling that is control parameter in loop expansions

One-Loop Results

Two-Loop Boson Self-Energy

• For m > 1 • k_F suppressed • no correction $\Pi_2(q) \sim \frac{e^2 k_F^{\frac{m-1}{2}} \pi^2}{6 N |\vec{L}_{(q)}|^2 \sin\left(\frac{m\pi}{3}\right)} \frac{e_{eff}^{\frac{m}{m+1}}}{k_F^{\frac{m-1}{2}(m+1)}}$

$$\Pi_2(q) \sim \left(\frac{e^2}{N |L_{(q)}|}\right) e_{eff}$$

Two-Loop Fermion Self-Energy

- For m >1 \sim $\Sigma_2(q)$ \sim $k_F suppressed$
 - no correction

For m = 1 red UV-divergent

Pairing Instabilitites of Critical FS

FL unstable to arbitrary weak -ve interaction in BCS channel leading to Cooper pairs How about a critical FS ?

[IM, Phys. Rev. B 94, 115138 (2016)]

Superconducting Instability

Add relevant 4-fermion terms For simplicity, we consider s-wave case with 2 flavours

Feynman Diagrams

 $p_1 - p_3 + k, j_2$

 $p_1 - p_3 + k, j_2$

Coupled Beta-Functions for V_s & e_{eff}

- Scatterings in pairing channel enhanced by volume of FS ~ ($k_{\rm F}$) $^{{
 m m}/2}$
- Effective coupling that dictates potential instability :

$$\tilde{V}_S = \tilde{k}_F^{m/2} V_S$$

• \tilde{V}_S marginal at d = m + 1

Aim study how e_{eff} affects pairing instability

Beta-Functions for V_s & e_{eff}

$\frac{\partial \tilde{V}_S}{\partial l} = \gamma \,\epsilon \,\tilde{V}_S - v_2 \,\tilde{V}_S^2 - v_1 \,e_{eff} + v_3 \,e_{eff} \,\tilde{V}_S$

$d-m=1-\gamma\,\epsilon$

$\gamma \epsilon = \epsilon - \frac{2 - m}{m + 1}$

Coupled Beta-Functions for V_s & e_{eff}

RG flows to $V_S \rightarrow -\infty$ for any initial V_S • More susceptible to pairing than FL ($e_{eff} = 0$)

Fermi Surface + Transverse Gauge Field(s)

Fermi Surface + U(1) Gauge Field

$$S = \sum_{j} \int \frac{d^{d+1}k}{(2\pi)^{d+1}} \,\bar{\Psi}_{j}(k) \,\mathrm{i} \left[\,\mathbf{\Gamma} \cdot \mathbf{K} + \gamma_{d-m} \,\delta_{k} \right] \Psi_{j}(k) \\ + \frac{1}{2} \int \frac{d^{d+1}k}{(2\pi)^{d+1}} \,\mathbf{L}_{(k)}^{2} \,\phi(-k) \,\phi(k) \\ + \frac{e}{\sqrt{N}} \sum_{j} \int \frac{d^{d+1}k \,d^{d+1}q}{(2\pi)^{2d+2}} \,\phi(q) \,\bar{\Psi}_{j}(k+q) \,\gamma_{0} \Psi_{j}(k)$$

Interaction vertex contains γ_0 instead of i γ_{d-m}

Values of **d**_c & critical exponents same as Ising-nematic case [IM, Phys. Rev. Research 2, 043277 (2020)]

2 Fermion Flavours + $U_c(1) \ge U_s(1)$

Model for QCPs for Mott insulator to metal & metal to metal transitions

- [L. Zou & D. Chowdhury, Phys. Rev. Research 2, 023344 (2020)]
- First fermion couples to the gauge fields $a_c \& a_s$ as ($e^c a_c + e^s a_s$)
- Second fermion couples as (e^c a_c e^s a_s)
- At one-loop, beta functions for the effective coupling constants give a **fixed line** $(e_{eff}^{c} + e_{eff}^{s}) \propto \epsilon$
- m > 1 fixed line feature survives at generic loops
 [IM, Phys. *Rev. Research 2, 043277 (2020)*]
- m = 1 fixed line feature breaks at three-loop
 [IM, Phys. Rev. Research 2, 043277 (2020)]

Epilogue

- RG analysis for critical FS scaling behaviour of NFL states in a controlled approximation
- m-dim FS with its co-dim extended to a generic value \leftarrow stable NFL fixed points identified using $\epsilon = d_c d_{phys}$ as perturbative parameter
- Pairing instability as a fn of dim & co-dim of FS
 superconductivity masks QCP
- Key point

 k_F enters as a dimensionful parameter unlike in relativistic QFT
 modify naive scaling arguments
- Effective coupling constants
 combinations of original coupling constants & k_F

Thank you for your attention !

